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Abstract. The automatic reconstruction of neurons from stacks of elec-
tron microscopy sections is an important computer vision problem in
neuroscience. Recent advances are based on a two step approach: First,
a set of possible 2D neuron candidates is generated for each section in-
dependently based on membrane predictions of a local classifier. Second,
the candidates of all sections of the stack are fed to a neuron tracker that
selects and connects them in 3D to yield a reconstruction. The accuracy
of the result is currently limited by the quality of the generated candi-
dates. In this paper, we propose to replace the heuristic set of candidates
used in previous methods with samples drawn from a conditional random
field (CRF) that is trained to label sections of neural tissue. We show on
a stack of Drosophila melanogaster neural tissue that neuron candidates
generated with our method produce 30% less reconstruction errors than
current candidate generation methods. Two properties of our CRF are
crucial for the accuracy and applicability of our method: (1) The CRF
models the orientation of membranes to produce more plausible neuron
candidates. (2) The interactions in the CRF are restricted to form a bi-
partite graph, which allows a great sampling speed-up without loss of
accuracy.

1 Introduction

To study the structure and function of nervous systems, neuroscientists need to
image volumes of neural tissue that are large enough to contain complete neural
circuits, with high enough resolution to resolve individual synapses. Currently,
serial section electron microscopy (EM) is the only technique that meets these
requirements [1], resulting in multi-terabyte anisotropic image stacks (that is,
volumes with high xy-resolution and low z-resolution) even for small organisms
like Drosophila melanogaster. The biggest bottleneck in the processing of these
image stacks is the time needed to manually reconstruct the neuron morpholo-
gies. Addressing this issue, automatic reconstruction methods for anisotropic
volumes became the subject of a vivid branch of research at the intersection
between computer vision and neuroscience [2–10].
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Fig. 1: Overview of the proposed method. Top: For each section, 2D neuron
candidates are generated by sampling from a CRF. Bottom: An integer linear
program (ILP) tracker is used to find a consistent subset of the candidates for
the whole stack at once.

The de facto standard for anisotropic neuron reconstruction methods consists
of two steps [7, 8, 10]: In the first step, a set of possible 2D neuron candidates
is generated for each section of the stack individually. These candidates are
obtained by identifying membranes using predictions of a local image patch
classifier like a deep neural network (DNN) [9] or a random forest [7, 8, 10]. Due to
ambiguities in the data and imprecisions of the predictions, many plausible and
possibly contradictory candidates are extracted for each section to increase the
chance that the correct candidates are among them. In the second step, the 2D
neuron candidates of the whole stack are fed into an integer linear program (ILP)
tracker, which connects them across adjacent sections. The ILP tracker ensures
that a non-contradictory subset of candidates is chosen and that the candidates
are connected to optimize a global criterion like a smooth continuation.

The accuracy and efficiency of the reconstruction is limited by the quality of
the generated 2D neuron candidates. It has been noted that the generation of 2D
neuron candidates is responsible for about 50% of the final error [8]. Although
the ILP tracker can ignore wrong candidates to some extent, it can not fanta-
size missing correct candidates. Thus, it is important to generate enough candi-
dates with high variation to make sure that the correct candidates are among
them. However, having too many incorrect candidates increases the computa-
tional overhead and may lead to spurious results. Therefore, a careful generation
of candidates is crucial for accuracy and tractability.

Our Approach We are proposing a novel method to generate 2D neuron
candidates that greatly improves the reconstruction accuracy. The key of our
method is the generation of 2D neuron candidates as samples from a pairwise
conditional random field (CRF) that is designed and trained to label 2D sections
of neural tissue. An overview of the proposed method is shown in Fig. 1.
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Furthermore, we introduce two extensions for pairwise CRFs for image la-
beling and show that they are essential for the accuracy and applicability of
our method: (1) Our CRF explicitly models the orientation of certain labels.
We use this to learn shape-related priors for membranes, which are usually thin
and elongated. This helps to produce more plausible section labelings, and thus
better 2D neuron candidates. (2) We restrict the interactions in the CRF to
form a bipartite graph. With this trick, Gibbs sampling [11] on the model can
be parallelized and carried out on a GPU with a speed-up factor of 39 compared
to a single core CPU implementation. This allows us to model a large number
of neighbor interactions for each pixel (improving accuracy) and to use a rich
set of biologically relevant labels (cell interior, mitochondria, glia cells, synapses,
and different orientations of membranes) while still being fast enough to process
large amounts of data.

The following section gives details about our CRF that we use to generate
the 2D neuron candidates. In section 3, we show results on a stack of Drosophila
melanogaster neural tissue, where candidates generated with our method lead
to 30% fewer final errors than competing candidate generation methods.

2 2D Neuron Candidate Sampling

To generate 2D neuron candidates, we repeatedly draw samples from a labeling
distribution on each section individually and transform them into binary neu-
ron/membrane segmentations. Let Ω ⊂ N2 be the pixel domain of a single EM
section. We model the distribution of labelings y =

(
y(i) ∈ K | i ∈ Ω

)
of assign-

ing each pixel in Ω to a label of a discrete set K with a conditional random field
(CRF). For the possible values in K, we distinguish between oriented labels KΦ

(for membranes) and non-oriented labels KN (for mitochondria, glia cells, etc.).
Each kα ∈ KΦ represents a label k at a certain discrete orientation α ∈ Φ.

The CRF is conditioned on pixel-wise predictions x =
(
x(i) ∈ RF | i ∈ Ω

)
with vectors of size F . We write y(i) or x(i) to refer respectively to the label or

prediction vector of pixel i ∈ Ω and x
(i)
f to refer to the fth prediction compo-

nent of x(i). The lateral interactions of each location in the CRF are modeled
with pairwise factors to neighbors in different directions Φ (as for the oriented
labels) and distances ∆ = {d1, . . . , dD}, approximated to the closest neighbor
on the pixel grid (see Fig. 2a for an illustration). We write N (i, α, d) to de-
note the closest grid neighbor of i in direction α and distance d. We achieve
rotation equivariance by re-using factors of same distance for interactions in dif-
ferent directions to directly model the rotation invariant statistics of our data.
Furthermore, the CRF is homogeneous, i.e., the same factors are used at every
location. Formally, we model the labeling distribution p(y|x) as

p(y|x) =
1

Z(x)
exp[−

∑
i∈Ω
〈wy(i) ,x(i)〉 −

∑
i∈Ω

∑
α∈Φ

∑
d∈∆

Rα,d(y
(i), y(N (i,α,d)))], (1)

where Z(x) is the partition function, the data term (first sum) is a linear com-
bination of the components of the prediction vectors with weights wk ∈ RF for
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Fig. 2: (a) Neighbors (blue) of a single pixel (i, orange) for orientations Φ =
{0◦, 45◦, 90◦, 135◦} and distances ∆ = {1, 3}. Neighbors are approximated to
the closest pixel on the grid in the given direction and distance. (b) Illustration
of the rotation invariant interactions. The values of rotated interactions are equal
for accordingly rotated labels.

each label k ∈ K, and the prior (second sum) models the pairwise interactions of
each location to its neighbors. For that, Rα,d determines the costs for the joint
labeling of i and its approximate neighbor N (i, α, d) in direction α at distance
d. These costs are shared across different orientations. Let kα denote the rotated
version of label k by α degrees: oriented labels change their orientation subscript
and non-oriented labels do not change at all. Defining Rα,d(k, l) = R̃d (k−α, l−α)
ensures that the resulting CRF is rotationally equivariant by treating every
pairwise interaction in the same way as the 0◦ interaction (see Fig. 2b for an

illustration). Finally, R̃d is a lookup table with entries R̃d (k, l) = vk,ld for the

joint labeling of neighboring pixels with distance d. The parameters v = {vk,ld }
and w = {wk} of our model are obtained by maximum likelihood learning [12].

Parallelized Sampling We use Gibbs sampling [11] to draw the samples from
p(y|x) that are needed for the training and generation of 2D neuron candidates.
To tackle the slow convergence properties of Gibbs sampling, we restrict the
interactions in the CRF to form a bipartite graph. For that, we divide the image
domain Ω into “odd” and “even” locations, following a checkerboard pattern
on the pixel grid. By modifying N to find the closest neighbor of opposite par-
ity in the given direction and distance, we obtain a bipartite CRF. We write
y(O) and y(E) to refer to the labeling of the pixels in ΩO and ΩE , respectively.
It follows that p(y(E)|y(O),x) =

∏
i∈ΩE

p(y(i)|y(O),x), and p(y(O)|y(E),x) =∏
i∈ΩO

p(y(i)|y(E),x), i.e., labels in one partition are conditionally independent

given the labels in the other half [13]. Samples y(i) ∼ p(y(i)|y(E)) for i ∈ ΩO
and y(i) ∼ p(y(i)|y(O)) for i ∈ ΩE can be drawn independently and in parallel.
We exploit this property by sampling a whole section in two half-steps, one for
y(E) and one for y(O), each of which is carried out with our parallelized GPU
implementation (source code available at http://github.com/funkey/prim).
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Fig. 3: Examples of samples drawn from our CRF for ambiguous cases. The used
labels are membrane (four orientations , , , and junctions ), cell interior
( ), mitochondria ( ), glia ( ), and synapse ( ). (a) shows the raw images, (b)
the ground-truth labelings, (c) the plain DNN prediction, (d-f) a representative
sample from CRFs D1, D4, and D8, respectively. See Section 3 for details.

3 Results

Setup We evaluate the performance of our 2D neuron candidate generation
method on two stacks of 20 EM images of size 1024 × 1024 from Drosophila
melanogaster larva neuropil with 4.6nm xy-resolution and 50nm section thick-
ness [14]. These stacks have been selected to capture well the typical variations
found in EM images. The first stack was used to train the DNN architecture
proposed in [9] to predict the pixel labels (shown in Fig. 3) that are used as
features x in the CRF. The second stack, for which we manually generated
ground truth, is used to compare different candidate generation methods. To
investigate the effect of different neighborhood sizes, we created three instances
of our model with different distance sets: model D1 (a baseline of our CRF) uses
∆ = {1}, D4 uses ∆ = {1, 5, 9, 15}, and D8 uses ∆ = {1, 3, 5, 7, 9, 15, 21, 31}.
All models use the same labels (shown in Fig. 3) and the same set of rotations
Φ = {0◦, 45◦, 90◦, 135◦}. From each model, we drew 20 samples per section to
generate the 2D neuron candidates. Each sample is the last labeling after 100
Gibbs iterations on the whole section, starting from a random initialization.
Error Measure We report the accuracy of the reconstruction in terms of
an edit distance proposed in [8], since this directly reflects the amount of time
needed to fix it. The errors are reported in four categories: “FP” (false positives)
are spuriously detected neurons in a section, “FN” (false negatives) are missed
neurons in a section, “FS” (false splits) missed links between neurons across
sections, and “FM” (false merges) are spurious links across sections. Details
about this error measure are given in the supplemental material.
Comparison We compare our model instances D1, D4, and D8 to the current
state of the art in neuron candidate generation: A series of graphcuts (Graph-
Cuts), applied on the membrane predictions of the DNN, as proposed in [8], and
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Fig. 4: Reconstruction errors for different 2D neuron candidate generation meth-
ods (a). Results are given as false positives (FP), false negatives (FN), false splits
(FS), and false merges (FM), see text for details. Our method D4 produces 30%
less errors compared to the best competing approach (GraphCuts). The impor-
tance of a rich neighborhood and oriented membranes in the proposed model
is shown in (b): Decreasing the neighborhood radius to one (D1) or ignoring
membrane orientations (D4 non-oriented) dramatically sacrifices reconstruction
accuracy.

gap completion (GapComp) [5] as proposed in [10]. As a baseline, we also gener-
ate candidates from component trees (CompTrees) [15], extracted from the same
predictions. We reconstructed neurons in the test stack for each candidate gener-
ation method using the publicly available ILP tracker Sopnet [8]. The trainable
parts of this tracker have been trained and validated for each method individ-
ually on the first 10 sections of the test stack. The test results on the last 10
sections are shown in Fig. 4. Model D4 provides by far the best result, improving
the error by 30% compared to the best competing approach (GraphCuts), which
is already outperformed by our baseline model (CompTrees). Surprisingly, the
larger neighborhood of model D8 does not lead to better results.

Model Properties To show the importance of oriented membrane labels, we
trained and evaluated a version of D4 with non-oriented membrane labels (right
bars in Fig. 4b). Due to undersegmentation, the model proposed only a few large
candidates and thus missed a lot of neurons (high FN and FS). To investigate
the effect of the bipartite restriction of our CRF, we also implemented a non-
bipartite version of model D4. The reconstruction errors differ by 1% in favour
of the bipartite version and may well be attributed to sampling noise.

Inference Time Tested on a NVIDIA Quadro 4000, we were able to draw 100
complete samples of size 1024× 1024 from D4 using our GPU implementation
in 4.4s. A single core CPU Gibbs sampler implementation took 174s on a Intel
Xeon CPU at 3.47 GHz to achieve the same, resulting in a speed-up factor of 39.
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Fig. 5: Demonstration of the candidate generation capabilities of model D4 (for
label legend see caption of Fig. 3). (a) shows the raw image, (b) the ground-truth
labeling and (c) the prediction for the class membrane. Images (d-f) show three
different samples drawn from D4.

4 Discussion

We showed that replacing fixed sets of 2D neuron candidates with samples drawn
from a distribution increases the reconstruction accuracy. Going beyond neuron
reconstruction, this scheme might also be applicable to other approaches that
rely on the quality of initial candidates, such as super-pixel based algorithms for
image segmentation.

In our case, an interesting aspect of our method is the rich labeling in the
samples. Besides membrane locations, they also indicate the locations of mito-
chondria, synapses, and glia cells. These labels are not only of biological rele-
vance, but could also be used to improve the reconstruction accuracy by, for
instance, exploiting the fact that mitochondria are surrounded by neuron and
synapses are separating neurons.

An open question in our method is how many samples need to be drawn
to obtain good results with minimal computational overhead. An interesting
solution might be to start with a few initial samples and draw more on demand
for locations that are unlikely according to higher level priors, for example where
there is a sudden change in direction or an unexpected end of a neural process.
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