
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2015

A framework of relational networks to build systems with sensors able to
perform the joint approximate inference of quantities

Martel, Julien ; Cook, Matthew

Abstract: Probabilistic approaches such as Bayesian inference have been extensively used to design
systems able to operate in environments under uncertainty. Implementing these approaches on real-
world systems constrained in their latencies or in their power-budget is a challenge because of the general
computational intensity required by such methods. In this work, we propose a very simple yet efficient
framework to perform approximate inference in a network of quantities between which relations are
specified a-priori. We present how we can take advantage of computational features of our framework to
implement it in dedicated hardware devices such as GPGPUs or Cellular Processor Arrays (CPAs) for
which we demonstrate a simple vision system instantiating the principles of our approach.

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-121743
Conference or Workshop Item
Accepted Version

Originally published at:
Martel, Julien; Cook, Matthew (2015). A framework of relational networks to build systems with sensors
able to perform the joint approximate inference of quantities. In: IROS 2015, Workshop on Advances in
Biologically Inspired Brain-Like Cognition and Control for Learning Robots, Hamburg, 1 October 2015
- 2 October 2015.

A Framework of Relational Networks

to Build Systems with Sensors able to Perform

the Joint Approximate Inference of Quantities

Julien N.P. Martel

Institute of Neuroinformatics

University of Zürich / ETH-Zürich

Zürich, Switzerland

Email: jmartel@ini.ethz.ch

Matthew Cook

Institute of Neuroinformatics

University of Zürich / ETH-Zürich

Zürich, Switzerland

Email: cook@ini.ethz.ch

Abstract—Probabilistic approaches such as Bayesian inference
have been extensively used to design systems able to operate in
environments under uncertainty. Implementing these approaches
on real-world systems constrained in their latencies or in their
power-budget is a challenge because of the general computational
intensity required by such methods. In this work, we propose
a very simple yet efficient framework to perform approximate-
inference in a network of quantities between which relations
are specified a-priori. We present how we can take advantage
of computational features of our framework to implement it
in dedicated hardware devices such as GPGPUs or Cellular
Processor Arrays (CPAs) for which we demonstrate a simple
vision system instantiating the principles of our approach.

I. INTRODUCTION

To autonomously behave in their environment we build
systems equipped with sensors reporting noisy measurements.
Achieving some perception in these system is a difficult but
crucial step toward the construction of more complex cognitive
architectures capable of taking decisions or performing actions
in their environments. The goal of a sensory system is then not
only to capture information but to “interpret” it by deriving
other useful quantities for further processing. For instance,
a visual system embodied in a mobile robot equipped with
a conventional camera might have to interpret the captured
light-intensity in other quantities related to the motion being
imaged, its ego-motion or a depth map in order to perform
obstacle avoidance.
Quantities we are interested in these sensory systems can
generally be divided into two categories whether a sensor is
present and is able to report related measurements or not. In
the first case, the quantity is said to be observed, this would be
the case of the light-intensity being reported by the camera in
our example. In the other case, the quantity is latent or hidden
such as the imaged motion –so-called optic-flow– as well as the
depth map or the mobile robot’s ego-motion. The process of
finding the possible values of a non-observed quantity is called
inference. Inference is usually performed assuming interactions
exist between observed and latent quantities such that the
values for the latent ones conditioned on the observed ones
can be derived. When building systems it is natural to express
how quantities relate to each other based on our knowledge

This work was funded by SNF grant 143947.

x

y

x

y

x

y

x

y

x

y

x

y

y y

x

y

x

y

Fig. 1: An illustration of a relational network modelling an observer
rotating in front of a static scene. This network illustrates the
quantities and relations detailed in Section IV. Each rectangle is a
map of 128× 128 pixel quantities corresponding to the resolution of

the DVS sensor [1], with the exception of ~R, a 3-dimensional vector.

of its design or from the assumptions we are ready to make
on the nature of its environment. This led to the creation of a
framework based on relational networks.

In this work, we focus on formulating principles describ-
ing how we can build systems with sensors using relational
networks. Our main goal is to create a framework that maps
easily on parallel computing devices.
In Section II we present the principles of our framework,
introducing the notion of quantities and relations and a simple
message-passing algorithm to perform approximate inference.
We discuss in Section III properties of our message passing
algorithm as well as its relation to existing approaches and
algorithms: we show how our approach can be interpreted from
a Bayesian perspective as performing some kind of maximum
likelihood inference. We present interesting computational
features that our model exhibits such as its parallelism and
distributivity. These properties are used to instantiate systems
that have to meet real-world constraints such as having a low
latency or running on a low power budget by taking advantage
of dedicated hardware such as GPUs or CPAs.
Finally we illustrate in Section IV the principles introduced in
this work by creating a relational network able to process vi-
sual information coming from a neuromorphic sensor reporting
asynchronous events for changes in light-intensity.

II. A NETWORK OF QUANTITIES AND RELATIONS

EQUIPPED WITH A MESSAGE-PASSING ALGORITHM

A. A network of quantities with relations modelling a system

In this work, we describe a problem in terms of observed
and inferred quantities connected by relations. Relations are
a-priori defined between the quantities –they are not learnt
in the scope of this work– and connect them in a network.
We then suggest a message passing algorithm that allows to
perform inference over the network by prescribing the values
of the quantities in order that they satisfy the relations they
are involved in.

1) Quantities: {Qi}i∈{1,...N}, N ∈ N are random variables
whose values {qi}i ∈ {1, ...N} typically lie in R

m,m ≥ 1.
The systems we aim to build use sensors measuring certain
quantities, these are the inputs of our framework. A quantity
having its value fed with measurements coming from a sensor
is said to be observed while a quantity with no measurement
is said to be latent or hidden. The latter can only have its value
inferred given the values of the quantities it is in relation with.
Any quantity whose value is probed by a third-part process can
be considered as an output of the framework.

2) Relations and networks: A relation R is defined over
a non-empty set of quantities D = {Qi}i∈{1,...N}, N ∈ N,
called the domain of the relation.
The relation R is a tuple R = (D, R) where R is a subset
of the Cartesian product of the elements of D (the quantities),
R ⊆ Q1 ×Q2 × ...×QN .
The value {qi}i for the quantities {Qi}i are said to satisfy the
relation R if the tuple (q1, ..., qi, ..., qN) is in R. To introduce
a gradation in the “level of satisfaction” of a relation with
respect to a quantity that is involved, one could define an
error function defined over the relation. As a very simple
example, one can imagine a simple relation between three
scalar quantities (A,B,C) ∈ R

3 stating that one of them has
to be the sum of the two others say C = A+B. The tuple of
values (1.2, 3.4, 4.6) is an example of a tuple satisfying this
relation.
A relational network is a pair consisting of a set of quantities
and a set of relations defined over these quantities N =
({Qi}i, {Rr}r).

We model interactions between the quantities using these
relations, they embed our knowledge about the system and its
design as well as the assumptions we are ready to make about
its environment.

3) Directions of a relation: The direction RQi←{Qj}j of
a relation R is defined as the mapping between the source
quantities {Qj}j = D \ {Qi} and the target quantity Qi ∈ D.
Note that this mapping is not necessarily a function since there
might exist multiple values {qi,v}v for the target quantity Qi

mapping to the values {qj}j of the source quantities {Qj}j
such that the relation R is satisfied i.e, ∀v ∈ {1..., V }, V ∈ N

the tuples (q1, ...qi,v, ..., qN) ∈ R.
For a target quantity Qi ∈ D, we denote the set of possible
values {qi,v}v satisfying the relation R given the values
{qj}j , j 6= i associated to the source quantities {Qj}j =
D \ {Qi} as {qi,v}v = RQi←{Qj}j (Qi|{qj}j) .

We define a direction to be able to retrieve the possible
values –the ones that can satisfy the relation– of a target

Require:
•A network N = ({Qi}i, {Rj}j)
•A set of hyper-parameters {ηj}j controlling the update-
rate of each relation
•A maximum number of iterations (or any other stopping
criterion) T ≥ 0

1: for all Qi ∈ {Qi}i do
2: Qi ← qti ∼ random()

{Quantities can be initialized sensibly if knowledge or
assumptions about their distributions can be made}

3: end for
4: t← 0
5: for all input quantities ∈ {Qi′}i′ do
6: Qi′ ← qti′ ∼ sensori′()
7: end for
8: while t ≤ T do
9: for all RQi←{Qj}j do

10: µt+1(Qi)← {q
t
j}j

11: qt+1
i ← (1−ηj)·q

t
i+ηj ·RQi←{Qj}j (Qi|µ

t+1(Qi))
12: end for
13: t← t+ 1
14: end while

Fig. 2: The algorithm describing the simple message-passing we
suggest to equip our framework to perform approximate-inference.

quantity given the values of the source quantities.
In practice, if multiple values for a target quantity can satisfy
the relation, we could keep track of all of them or consider a
single one. In the latter case, the direction of a relation could
be thought as a function applied on the values of the source
quantities which image is the value of the target quantity.

Coming back to the example we introduced in II-A2 where
three quantities A,B and C are related such that C = A+B,
note that this equation for the relation naturally expresses one
of the three directions of the relation. The values of the target
quantity C are given by summing the values of A and B.
Finding the two other directions is trivial, manipulating the
equation one writes A = C − B yielding the possible values
when A is considered as a target quantity given the sources
B and C. Similarly for B: B = C − A. In the general case,
finding the form of a direction expressing the mapping between
the target quantity and the source quantities might be difficult.
Given that this mapping is generally not a function, one might
actually want to find a single value for a target quantity and
reduce the mapping to a function.

B. An update rule to change the value of a target quantity in
a given direction

We suggest an approximate inference procedure for the
framework to find the values of latent quantities by iteratively
pushing quantities in the network to satisfy the relations they
are involved in. First we introduce an update-rule treating an
incoming message µ(Qi) to update a target quantity Qi as:

qt+1
i = (1− η) · qti + η · RQi←{Qj}j (Qi|µ

t+1(Qi)) (1)

with η ∈ [0; 1]

The superscript t indicates an iteration of the message-passing
algorithm we describe later in Section II-C. A message µ(Qi)
to update the target quantity Qi using a particular direction

RQi←{Qj}j contains the values {qj}j of the source quantities

of this direction: µt+1(Qi) = {q
t
j}j .

The update-rule has the form of a simple convex blending
of parameter η. Intuitively, it smoothly changes the value
maintained by the target quantity toward better satisfying the
relation it is involved in by incorporating the suggested value
from the direction applied to the source quantities.

One might wonder why the update-rule does not directly
update the target quantity with the prescribed value coming
from the direction given the values of the source quantities
(i.e η = 1)? In fact, consider that a quantity might be involved
in more than a single relation, therefore directly updating the
value of the target quantity with the particular direction of
a relation might lead to upset other relations the quantity is
involved in.

C. A message passing algorithm for approximate inference

The objective of the inference procedure we describe in this
section is to change the value of a quantity to better satisfy
a direction using the above update-rule, and do it again for
every direction until convergence, i.e until the values of every
quantity satisfy the relations. If each direction is picked in turn,
so that the value of the target quantities are slowly enforced,
the network can be expected to converge to a state where all
the quantities have their values satisfy their relations. This
is only possible given that an input conform to the model’s
hypothesis is provided; in any other case, the relations might
not be satisfiable at all. Because the values of the quantities
are jointly pushed to optimize the relations they are involved
in using a process that is only local it intuitively explains why
the suggested inference is approximate, i.e non-optimal.

In more details, when an input feeds the values of one
or several observed quantities we want to update all the
quantities using each of the directions, in turn, and gently
change the values of the associated target quantities by the
mean of the update-rule we introduced in II-B. Precisely
the message passing-algorithm picks a direction, creates a
message emerging from the source quantities containing their
values, apply the direction to this message and updates the
target quantity using the update-rule. Another direction is then
picked, creates another message emerging from the source
quantities with the values that have been previously updated if
updated, and updates the target quantity, and so forth. Once all
the directions have updated their target quantity, an iteration of
the message passing algorithm has been done. We iteratively
repeat this procedure until convergence. We summarize our
simple message passing algorithm in Figure 2.

III. PROPERTIES AND COMPARISONS OF THE

FRAMEWORK WITH OTHER APPROACHES

A. Properties and computational features

In II-B we intuitively described how the update-rule
changes the quantities using relations in the network. In this
section we explain some of its properties and discuss how it
can be interpreted using a probabilistic perspective. We then
present some of the interesting computational features of the
framework in terms of parallelism of the computation and
distributivity of the components.

1) From a probabilistic perspective: Let us consider we
have observed realizations of two random variables X and
Y drawn from stationary distributions. Let us denote X =
{x1, ..., xi, ..., xM} and Y = {y1, ..., yi, ..., yN} the realiza-
tions of these random variables.
What we call the value of a quantity X (resp. Y) we consider
in our framework to be a point-wise estimate of the empirical
mean (the first raw sample moment) x̄ of the distribution of X
(resp. Y). At any point in time when we receive a realization
xi of X we can compute a new estimate of x̄.
If we have received M realizations of X and N realizations
of Y that we assume come from the same random process,
what would be the mean of a random variable Z relying on
these two random variable realizations, i.e what would be the
value of the quantity Z?

Property 1. The update equation z̄ = (1 − η) · x̄ + η · ȳ
with η = N

M+N
computes the update that gives the empirical

mean point-wise estimate of a random variable Z combining
M realizations of a random variable X and N realizations of
Y as if they were coming from a single distribution.

Proof: We can compute the empirical mean x̄ of the
distribution of the random variable X as x̄ = 1

M

∑

X xi

analogously the empirical mean ȳ for the random variable Y
is ȳ = 1

N

∑

Y yj .
Let us introduce a random variable Z drawn from a distri-
bution for which we assume that the M realizations of X
and the N realizations of Y have been drawn, we denote
Z = X ∪ Y = {z1, ..., zk, ...z|Z|} = {x1, ..., xM , y1, ..., yN}
the realizations for Z.
We can now compute the empirical mean z̄ of the random
variable Z:

z̄=
1

|Z|

∑

Z

zk =
1

M +N
(
∑

X

xi +
∑

Y

yj)

=
Mx̄+Nȳ

M +N
= (1− η) · x̄+ η · ȳ with, η =

N

M +N

Property 2. If the random variables X and Y are assumed
to be drawn independently from normal distributions p(X =
xi|z̄, ẑ) = N (z̄, ẑ) and p(Yj |z̄, ẑ) ∼ N (z̄, ẑ) then the update-
equation z̄ = (1 − η) · x̄ + η · ȳ is maximizing the likelihood
of z̄ given the realizations Z .

Proof: Maximizing the likelihood is equivalent to mini-
mizing the negative log-likelihood:

z̄∗= arg min− logL

Also, since Z = X ∪ Y , and assuming measurements are
independent allows to rewrite the minimized objective in terms
of the probabilities of X and Y :

L=− log
(

∏

k

p(Z = zk|z̄, ẑ)
)

=− log
(

∏

i

p(X = xi|z̄, ẑ)
∏

j

p(Y = yj |z̄, ẑ)
)

=
∑

i

− log p(X = xi|z̄, ẑ) +
∑

j

− log p(Y = yj |z̄, ẑ)

Using the fact that X and Y are two Gaussian distributed
random-variables, and simplifying constants in the objective:

z̄∗= arg min
∑

i

(xi − z̄)2 +
∑

j

(yj − z̄)2

The optimum z̄∗ of this objective is reached when the right
hand term’s derivative is null, yielding the desired result:

∂

∂z̄

(

∑

i

(xi − z̄)2 +
∑

j

(yj − z̄)2
)
∣

∣

∣

z̄=z̄∗

!
= 0

⇒
∑

i

xi −M · z̄∗ +
∑

j

yj −N · z̄∗
!
= 0

⇔ z̄∗ =
1

M +N

(

∑

i

xi +
∑

i

yi

)

⇔ z̄∗ = (1− η) · x̄+ η · ȳ, with η =
N

M +N

Using Property 2 the update-rule is interpreted from a
probabilistic perspective as performing maximizing likelihood
when the measurements Z are assumed to be drawn from a
Gaussian distribution. In the case we are not ready to make
such a strong assumption, the interpretation of the update-rule
corresponds in computing the empirical mean of a distribution
of unknown form as seen with Property 1. Note that we could
write other update-rules to match higher-order moments of
our distributions very similarly –here shown for second order
moments–: ẑ = (1 − η) · x̂ + η · ŷ + (1 − η)η · (x̄ − ȳ)2.
The update-rule also generalizes to multidimensional random
variables and multivariate distributions.

To interpret these results in terms of source and target quan-
tities in our framework, let the random-variable X represent
the target quantity to be updated and Y the direction applied
to the source quantities (several random-variables that would
be transformed by a functional mapping described by the
direction). The meaning of the hyper-parameter η corresponds
in this probabilistic view to how much old samples (from X)
and new samples (from Y) we consider having gathered to
estimate the value of the quantity Z represented via the point-
wise estimate of its mean z̄. The fewer samples for X and the
more samples for Y naturally leads to update Z faster, which
is what η describes.

2) Computational features: Using the simple message-
passing algorithm and the structure of network we introduce
offers interesting computational features to our system:

a) Joint approximate inference: is carried in the frame-
work for all the quantities simultaneously. In the algorithm we
present in Figure 2, when the input of the network is fed by the
sensor measurements all the relations are picked in turn and
update their quantities. Each relation is picked and updated T
times before proceeding to the next measurement, meaning that
for each measurement reported by a sensor, all the quantities
–including the ones not directly connected to the sensor itself–
are updated from all possible directions. This lets information
flow in the network to allow the values of the quantities to
converge using information from the different parts of the
network. As we will show it in Section IV, this is a key feature
that allows, for instance, to resolve under-constrained problems

by letting the quantities slowly and consensually agree on their
values.
In this respect, the framework we suggest is radically differ-
ent from traditional approaches processing information in a
pipeline fashion where the output of a “processing block” feeds
the input of another one in a purely feed-forward manner. In
this framework, information goes back and forth in the network
and quantities that have updated their values are questioned
back multiple times by their relations to other quantities. This
whole process lets the network relax in a state where the
values of the non-observed quantities have to mutually agree to
interpret the sensory input: relations act as ”soft-constraints”.

b) Modularity: in the framework allows us to add a new
quantity in the network without having to modify anything to
its already existing structure, it can be introduced by adding
a relation to other quantities already present in the network.
Similarly adding a sensor is simply done by feeding its
measurements in the appropriate quantity. As well, if a sensor
would suddenly fail, the network continues to run even-though
inference can be altered since it benefits from less information
flowing in.

c) Distributed computation: can be achieved in the
framework since each target quantity can be seen as an
independent unit treating incoming messages and blending
them with its own value using the suggested update-rule. Thus,
a system that would run the whole network can be easily
divided in sub-systems each responsible of their target quantity,
the only necessary communication between them is the sharing
of the messages.
Note that a target quantity that would be involved in multiple
relations can treat differently messages coming from two
different directions, hence not limiting the distributive feature
of the network.

d) Parallelism: is also made possible in the framework
thanks to a form of “conditional independence” in the network.
In fact, any quantity in the network can be seen as independent
of the others given the quantities involved in its relations. In
some sense, and using the graphical models terminology, this
defines a “Markov blanket” of a quantity.
Practically if one quantity is not in the Markov-blanket of
the other, they can both be updated simultaneously. Note
that sequential and parallel updates do not guarantee to have
the same properties since changing the order in picking the
relations typically changes the outcome of the approximate-
inference.

B. In relation to other approaches

In this section we relate our framework to existing ap-
proaches, in the light of factor-graphs, and thus motivate the
choices made in the representation of the values and of the
quantities stored in the network of quantities.

1) Modelling a problem in a network: Having quantities
connected in a graph over which an error function is defined
locally for cliques of variables is the concept of factor-graph
modelling. Algorithms such as belief propagation allow to
efficiently perform exact inference for graph having a tree
structures when it comes to marginalize (sum-product) or
maximize (max-product) one or more quantities. Factor-graphs
thus propose a unifying view generalizing concepts that first

emerged in statistical physics with Markov Random Fields
[2], and are now used in more recent applications like error-
correction and turbo-codes [3] or in Bayesian networks [4],
Kalman filters [5] and Hidden Markov Models [6]. However,
many practical models cannot be expressed using tree-like
structures without making serious assumptions compromising
their expressiveness. Typically, one likes to think of images
as graphs where pixels are organized on an grid connected to
their four-neighbours. In order to perform inference for these
models, extensions to belief propagation like variants of the
so-called loopy belief propagation were proposed, generally
loosing all the convergence and exact inference guarantees
that stood for trees. Therefore, our efforts are concentrated
to suggest a framework in which models can be easily created
and extended using a simple yet efficient inference algorithm.

2) Representing the values of the quantities and passing
messages: One of the main issue in the instantiation and
practical implementation of factor-graphs is the choice of a
representation for the values of the quantities and for the
messages that are passed. Should quantities be thought as
random-variables for which assumed parametrized distribu-
tions are stored, like in Bayesian networks or Kalman filters?
Is it better to store samples as realization of these variables,
like in particle filters? Also, how to deal with quantities
taking their values in continuous state-space: should we pass
point-wise estimates, histograms or parametrized functions?
To represent values of the quantities Kalman-filters –in their
original formulation– restrict themselves in assuming random-
variables drawn from Gaussian distributions, with linear re-
lations so that the recursive computation of the quantities is
closed under these transformations. In particle filters, samples
(the particles) representing the values of the quantities can
be propagated through non-linear relations, and can represent
“arbitrary” distributions. A drawback is that many of them
might be needed to faithfully run inference on a complex
model consequently yielding intensive computation.
In this work, a choice we made in our framework is to
compress the information of random-variable distributions in
their moments. In III-A1 we show how we consider the values
of our quantities to be representing the first order moments and
explain the update-rule in that respect. We also show that if we
meant to assume Gaussianity of the distributions, the update-
rule can be seen as performing maximum-likelihood. We also
work in maintaining and propagating second order moments
in the network so that values, that would now be composed of
these two numbers, can represent their own belief.

IV. EXAMPLE AND RESULTS

As an instance of this framework we build a system that
is able to infer the interpretation of a static scene (no object is
assumed to move) imaged by an observer solely able to rotate,
jointly in terms of its light-intensity, spatial gradient, temporal
gradient, optic-flow and ego-motion.
To demonstrate the inference capabilities of our system, we
attach a Dynamic Vision Sensor [1] that only reports pixel-wise
temporal contrast changes in light-intensity in an asynchronous
stream of events. Contrary to a conventional camera sensing
an absolute amount of light intensity for a whole frame of
pixels during a fixed period of time (typically at 22-25Hz), the
DVS produces a stream of events asynchronously produced at
each pixel beased on the contrast changes in the imaged scene.

(a) (b)

(c) (d)

Fig. 3: We ran the network presented in Section IV for T = 50

iterations or our message passing algorithm. (a) shows the Dynamic
Vision Sensor (DVS) events: this the only input to the network, blue
(resp. red) encodes “positive” (resp. negative) contrast changes. (b)
shows the intensity inferred from the network. (c) shows the spatial
gradient of the light intensity, the hue encodes the gradient direction.
(d) shows the optic-flow, the hue encodes its direction while the
saturation encodes its magnitude.

Thus, the output of the sensor is a stream of events located
by their (x,y) coordinates with signed polarities (+1 / -1)
indicating positive or negative changes in the scene luminance,
timestamped with a high time resolution (1µs).

A. A simple vision system using visual quantities & relations

In the following we detail how we built a network, as seen
in Figure 1 to model the simplified vision task described above.

1) R1: Events coming from the DVS are related to temporal
variations of light intensity: The first relation we can state
is between the events Ex,y , or contrast changes produced by
the DVS we use in our system and the temporal variations

of the light intensity Vx,y =
∂Ix,y

∂t
at a pixel location (x, y),

namely: Ex,y = f(Vx,y). The function f describes the internal
processing mechanism of our sensor to binarize variations of
light-intensity –modelling it is out of the scope of this work–.
Ex,y is an instance of a scalar quantity in our framework. It
can be thought as being organized on a grid, each pixel (x, y)
in this grid contains its estimated value of Ex,y . It is connected
via a relation to an homologous quantity at position (x, y) in
another grid Vx,y . We call these grids: quantity maps. The
same relation exists between all (x, y) belonging to the map
E and their homologous in map V .

2) R2: Spatial variations of the light intensity are related to
its temporal variations by the optic-flow equation: Computer
vision is traditionally working with images using grey-level

intensities. Inferring these intensities Ix,y from the events
Ex,y we get from the DVS is a non-trivial problem and
would typically require a dedicated, computationally expensive
algorithm as presented in [7].
However there is a simpler relation between the spatial vari-
ations of the light intensity, also called spatial gradient and

denoted ~Gx,y = (
∂Ix,y

∂x
,
∂Ix,y

∂y
)T and the temporal variations

of the light intensity Vx,y . More specifically the total vari-
ation of light intensity can be written with the chain rule

as the sum of its spatial and temporal variations:
dIx,y

dt
=

∂Ix,y

∂x
∂x
∂t

+
∂Ix,y

∂y
∂y
∂t

+
∂Ix,y

∂t
. Assuming now that luminance in

the scene is constant on a small amount of time leads to write
dIx,y

dt
= 0, yielding the classical optic-flow constraint equation

(OFCE) [8] after rearranging and identifying the terms with

V and ~Gx,y: Vx,y = − ~Gx,y · ~Fx,y , denoting the optic-flow
~Fx,y = (∂x

∂t
, ∂y
∂t
)T .

Note that given an image gradient ~Gx,y and temporal variations

of the light intensity Vx,y , one can only solve for the flow ~Fx,y

in the gradient direction. Across intensity regions where there
is no spatial gradient, i.e with light intensity being uniform
in space, the problem is even worse since the OFCE is “ill-
conditioned” and cannot be solved for a particular optic-flow.
The above equation is under-constrained and this problem is
known as the aperture problem [9]. A variety of methods
have been designed to regularize the OFCE, amongst them are
the popular variational methods [10] or multi-grid differential
methods [11].

3) R3: Light intensity and its gradient: Writing the relation
between the light-intensity and its spatial gradient choosing
the gradient as a target quantity is trivial since by definition:
~G = ~∇I . How to update the intensity based on the spatial
gradient is a slightly more complicated issue. By taking the
divergence on each side the following relation appears: △I =
∇ · ~G which is in the form of a Poisson equation and yields a
natural candidate for the update of I .

4) R4: Assuming a rotation in front of a static scene
regularizes the optic-flow: The DVS only produces events
when there is a change in intensity of the imaged scene:
for instance when the observer moves. If we restrict our
visual system to rotations in a static scene, the instantaneous
motion of the system is entirely specified with a single rotation

described by a pseudo-vector ~R whose orientation is the axis
of the rotation and which magnitude corresponds to the angular
velocity.
Given these two simplifying assumptions for our system: a
perfect rotation and a static scene it is now possible for a

particular rotation ~R to influence the optic-flow that a pixel

looking in the direction of ~Cx,y should experience.

B. Inference performed in the visual network

We use the message-passing algorithm we introduced in
Section II and show images of the resulting inference carried
in the network in Figure 3. We binned 20ms of events in 128×
128 frames and ran T = 50 iterations for each relation in
the network. This is achieved at approximately 60Hz on a
recent Intel mobile processor, and about 170Hz on a GPU
allowing real-time applications. This network is the object of
an implementation on an analogue CPA [12], simulations and
preliminary results on an actual device indicate the system
could run in real-time using about 3W of power.

V. CONCLUSION

In this work we introduced a framework that allows to
perform approximate inference in the form of a network of
quantities and relations. Observable quantities reported by
sensors are used, jointly with a set of a-priori defined relations,
to infer other quantities of interest. The relations are used to
softly constrain the system to find a consistent solution, i.e
an assignment of the values satisfying the relations for all
the quantities in the network. We suggested a very simple
update-equation, that smoothly blends the actual values of
the quantities with the values imposed by the relations. We
showed that a simple message-passing algorithm performing
the update of all the quantities several times for all the relations
picked is performing a maximum-likelihood update. Such a
framework equipped with the message passing algorithm we
propose enables computation to be performed in parallel and
can trivially be distributed allowing to execute it on dedicated
hardware such as GPGPUs or CPAs. As inference is performed
jointly for all the quantities our approach differs from common
feed-forward approaches where neither loops nor feedbacks
between quantities are used.
We demonstrated the capabilities of a small visual system built
from the principles of the framework we developed in this
work. Using the inference algorithm we proposed, we suc-
cessfully inferred a visual interpretation in terms of optic-flow,
ego-motion, light intensity and spatio-temporal derivatives of
the light intensity from a DVS input. The solution of such
problems is usually addressed by dedicated algorithms that
are “hot” topics of on-going vision research.

REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15 µs

latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-

State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[2] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für

Physik, vol. 31, no. 1, pp. 253–258, 1925.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon Limit

Error-Correcting Coding and Decoding: Turbo-codes, 1993, vol. 2.

[4] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann, 1988.

[5] R. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. of the ASME–Journal of Basic Engineering, vol. 82, no.
Series D, pp. 35–45, 1960.

[6] L. Baum and T. Petrie, “Statistical inference for probabilistic functions
of finite state markov chains,” Ann. Math. Statist., vol. 37, no. 6, pp.
1554–1563, 1966.

[7] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. Davison, “Simul-
taneous mosaicing and tracking with an event camera,” in Proc. of the

British Machine Vision Conference, BMVC 2014, 2014.

[8] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelli-

gence, vol. 17, pp. 185–203, 1981.

[9] T. Poggio, V. Torre, and C. Koch, “Computational vision and regular-
ization theory,” Nature 317, pp. 314–319, Sept. 1985.

[10] J. Weickert and C. Schnörr, “A theoretical framework for convex
regularizers in pde-based computation of image motion,” Internat.

Journal of Computer Vision, vol. 45, no. 3, pp. 245–264, 2001.

[11] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” Proc. of Imaging Understanding

Workshop, vol. 17, pp. 121–130, 1981.

[12] J. Martel, M. Chau, P. Dudek, and M. Cook, “Toward joint approximate
inference of visual quantities on cellular processor arrays,” in Proc. of

the IEEE Internat. Symp. on Circuits and Systems, ISCAS 2015, 2015.

