
Toward Joint Approximate Inference
of Visual Quantities on Cellular Processor Arrays

Julien N. P. Martel ∗, Miguel Chau †, Piotr Dudek ‡ and Matthew Cook ∗
Email: jmartel@ini.ethz.ch mchau@student.ethz.ch p.dudek@manchester.ac.uk cook@ini.ethz.ch

∗ Institute of Neuroinformatics, University of Zürich / ETH-Zürich, Zürich 8057, Switzerland
† Department of Computer Science, ETH-Zürich, Zürich 8092, Switzerland

‡ Sc. of Electronic & Electrical Engineering, The University of Manchester, Manchester M13 9PL, United-Kingdom

Abstract—The interacting visual maps (IVM) algorithm intro-
duced in [1] is able to perform the joint approximate inference of
several visual quantities such as optic-flow, gray-level intensities
and ego-motion, using a sparse input coming from a neuromor-
phic dynamic vision sensor (DVS). We show that features of the
model such as the intrinsic parallelism and distributed nature
of its computation make it a natural candidate to benefit from
the cellular processor array (CPA) hardware architecture. We
have now implemented the IVM algorithm on a general-purpose
CPA simulator, and here we present results of our simulations
and demonstrate that the IVM algorithm indeed naturally fits
the CPA architecture. Our work indicates that extended versions
of the IVM algorithm could benefit greatly from a dedicated
hardware implementation, eventually yielding a high speed, low
power visual odometry chip.

I. INTRODUCTION

In a visual information processing system, raw observations
made by a sensor are exploited to infer quantities of interest
such as optic-flow, ego-motion, or other useful quantities. In-
ferring these quantities given image frames has been addressed
by computer vision since the 60’s [2], and remains an active
research topic [3]. Recently a new paradigm called event-based
vision has emerged with the development of neuromorphic
sensors inspired by our retina, reporting asynchronous changes
in light-intensity rather than image frames [4]. Both traditional
computer vision and event-based vision generally address the
problem of inferring other quantities of interest in a pipelined
fashion using a series of processing blocks.

In Section II we will review features of the model of the
interacting visual maps (IVM) originally proposed by Cook
et al. in [1]. Unlike more traditional approaches that use a
pipelined sequence of algorithmic blocks feeding the output
of each block as input to the next, this model softly enforces
relations to be satisfied between quantities represented by units
connected in a network. Data flows bidirectionally on each
link so as to perform approximate inference on all parts of
the model simultaneously, jointly inferring the values of the
non-observable quantities. Units containing relevant quantities
such as gray-level intensity or optic flow are connected by
explicitly-provided relationships between them. The algorithm
consists of passing messages between the units, with each unit
updating itself to better satisfy its relations with its neighbors.
This approach is extendable and robust, and uses a localized
style of computation that suggests the use of parallel hardware.

This work was funded by SNF grant 143947.

Model View CPA Implementation View

V

G F

G
y

F

x

V
y

x x

y

S

N

E

Instruction-dispatcher

Processing Element

W

x

y

Fig. 1: Schematic view showing the model of the Interacting Visual
Maps (IVM) as implemented on a general CPA architecture.
In color we show how units in the model map to registers on
processing elements (PEs) of the CPA. All the PEs’ same register
(represented with the same color in the figure) define a data-plane.
All the values of all the units (x, y) in a map of the model are stored
in a data-plane at the corresponding (x, y) location.
One PE holds in its registers the values of homologous units at
position (x, y) in the different maps of the model.
The NEWS (North, East, West, South) communication plane allows
PEs to communicate with their neighbors and is essential for relations
in the model that involve adjacent units.

In Section III we will discuss the implementation of the
model on a Cellular Processor Array (CPA) simulator [5],
with a view toward eventual embedding in an integrated circuit.
The use of CPAs is motivated by the inherent locality of the
computation, its homogeneity for units representing the same
quantity, and the ability to efficiently communicate information
to adjacent cells. This allows us to make efficient use of these
chips to run the message-passing algorithm and shows that
CPAs are excellent platforms for this purpose. We present
results of inference carried out on a CPA simulator with real-
world data, as well as the hardware resources required.

The good performance of our implementation suggests that
in the future an extended model could also be implemented,
perhaps on extended CPA hardware, providing a complete
visual odometry system, a possibility we discuss in Section IV.

978-1-4799-8391-9/15/$31.00 ©2015 IEEE 2061

Authorized licensed use limited to: Stanford University. Downloaded on March 27,2021 at 01:04:51 UTC from IEEE Xplore. Restrictions apply.

(a)

V:
Light Time-
Derivative

 I:
Light-

Intensity

G:
Spatial

Gradient

F:
Optic Flow

C:
Calibration

R:
Rotation

E:
Events

(b)

Fig. 2: (a) The system being modelled by the interacting visual maps.
(b) A representation of the interacting visual maps model we use [1].
The arrows indicate the flow of information. The links between I , G,
F , and R are bi-directional. allowing these four quantities to converge
to mutually optimally satisfy the relations.

II. PERFORMING JOINT APPROXIMATE INFERENCE ON
SEVERAL VISUAL QUANTITIES: THE IVM APPROACH

A. Quantities and Relations

The model of the interacting visual maps was first intro-
duced in [1]. It consists of a network of relations between
units containing visual quantities such as optic flow or spatial
gradient of the grayscale image. Each relation consists of an
equation relating some of the visual quantities. Using these
equations, the value of one of the visual quantities can be
updated so as to better satisfy the equation, given the values
the other quantities in the equation. For instance, let us say a
unit represents the absolute light-intensity at a certain position
Ix,y as reported by a camera, and another unit represents
events Ex,y as reported by a dynamic vision sensor (DVS) [4].
Contrary to traditional cameras reporting frames of integrated
light-intensity over a clocked interval that is the same for all
pixels, a DVS tracks the light intensity pixel-wise and sends
an asynchronous single-pixel event whenever the intensity
level increases or decreases by a certain percentage. While
traditional cameras report absolute light-intensities, dynamic
vision sensors report a signed polarity {+1,−1} indicating
only a percentage change in the light-intensity. We accumulate
these events over a fixed time interval to approximate the
temporal derivative of the log light intensity. The equation
Ex,y ∼ ∂Ix,y

∂t = Vx,y is an instance of a relation that models
the interaction between two units, E and V . The complete
network we used for this work is the one described in [1],
summarized in Figure 2.

B. A simple message-passing algorithm for approximate in-
ference

A simple message passing algorithm is used to update
the quantities stored in the network. Each relation is used to
update the quantities it relates. An update will adjust one of
the quantities (which we will refer to as the target) based on
the other quantities involved, so as to bring the equation a
little bit closer to being satisfied. Doing this repeatedly for
the various possible targets of the various relations brings the
network toward a local optimum, with the relations satisfied as
well as possible given the inputs, which are not modified. The
convergence of this process can be understood by viewing the
updates as performing gradient descent on an error measure

consisting of the sum of the squared errors of all the equa-
tions [1], or equivalently as converging to a local maximum
a posteriori (MAP) estimate of the variable values, assuming
Gaussian distributions for the errors of the equations.

To update the value q of a target quantity, the set of
values Q of the source quantities serve to compute a message
µtR(Q) = R(Qt) using the selected relation R as a function
R : Q → R(Q) providing the nearest value of the target
quantity that would satisfy the relation.. The superscript t
stands for the current time step (before the update takes place).
Then, to update the target quantity, its current value is blended
with the incoming message using the equation:

qt+1 = (1− α) · qt + α · µtR(Q), α ∈ [0; 1] (1)

where α is a hyper-parameter controlling the rate at which the
blending occurs.

As a concrete example, let us write the update-equation in
the simple case of changing the spatial gradient of the light
intensity ~Gx,y given the light-intensity itself Ix,y . There is a
single source quantity involved in this relation, Q = {Ix,y},
and the target is ~Gx,y . The relation expressed in a functional
form for this direction is R : Ix,y → ~∇(Ix,y). Hence, the
update equation becomes in this particular case:

∀(x, y), ~Gt+1
x,y = (1− α) · ~Gtx,y + α · ~∇(Itx,y)︸ ︷︷ ︸

µt
R
(Ix,y)

(2)

C. Features of the framework

General advantages of the model include its extendability
and robustness:

Extendibility is a property of the network in the sense that
one does not need to develop any new algorithms when adding
new quantities to the network. When new quantities are added,
one simply needs to be able to state one or more relations
relating the new quantities to the existing quantities. (Of course
if the new quantity is not related to the existing quantities in
any known way, then there is not much you can do, unless
the unknown relationship can be learned from experience, an
approach we do not discuss here.)

Extendibility can also be discussed in terms of the sensors
that can be connected to the network. A sensor reporting a
quantity already modelled can be added to the network simply
by feeding the sensor’s output to the appropriate units. The
model does not need to change when different sensors are
used, and in fact multiple sensors can be used simultaneously,
in which case the model will perform sensor fusion on the
supplied quantities.

Robustness is a crucial issue in a practical system. It turns
out that jointly inferring several quantities makes the system
inherently robust. Instead of propagating errors in a feed-
forward pipeline, the recurrent nature of the model tends to
dampen irregularities as the good data “outvotes” the bad,
making the system robust to noise and failures.

In terms of computation, the model exhibits interesting
features that we exploit to be able to efficiently implement
it within a CPA architecture:

2062

Authorized licensed use limited to: Stanford University. Downloaded on March 27,2021 at 01:04:51 UTC from IEEE Xplore. Restrictions apply.

Conditional independence exists between maps in the net-
work. Specifically, in a relation, the target unit can be updated
independently of all the other units in the network given
the source units involved in the relation. Using the Bayesian
vocabulary, one would say that the source units of a relation-
based function form the Markov Blanket of the target unit.
This Markov Blanket lets us benefit from distributivity and
parallelism, since two distinct relations using different sets of
units can be updated at the same time independently.

Computation locality exists between units in different maps.
Most of the relations designed in the network described in
Section II-A only relate a value Ax,y to its direct counterpart
in another map, Bx,y . In other words, units from different maps
only need to communicate if they are located in homologous
(x, y) cells. This naturally suggests implementing the model
on an architecture where the data lies in array planes inter-
connected according to the (x, y) coordinates, so that a cell
Ax,y can communicate with the homologous cell Bx,y very
efficiently.

In fact, only the relation involving ~Fx,y , ~R and ~Cx,y is
non-local, due to ~R being a global property of the system
(as opposed to being an (x, y) map). The single 3D vector
~R is inferred from all the cells in ~Fx,y , making use of the
corresponding ~Cx,y .

Computation homogeneity exists between units in the same
maps. The operations that are carried out to update units in a
map involved in a relation are the same for each unit in each
cell. An operation involving two cells in the arrays A and B at
position (x, y) can be done at the same time and independently
of the same operation at another pixel (x′, y′).

III. IMPLEMENTING THE MODEL USING A CELLULAR
PROCESSOR ARRAY ARCHITECTURE

A. Matching the interacting visual maps with CPAs

In Section II-C we detailed computational features that
make the IVM model suited to efficient implementation on a
CPA architecture. CPA chips such as ASPA-3 [6] or SCAMP-
5 [7] appear to be a close fit for the IVM algorithm, and
such an implementation would allow us to run the IVM
with significant practical advantages such as low latency, low
power-consumption, and a small form-factor. However, before
trying to implement these hard-to-debug algorithms directly on
a chip, it makes sense to try them on a simulator first (already
a non-trivial undertaking), and so this is the approach we have
taken.

CPAs are massively parallel arrays working in a single-
instruction-multiple-data (SIMD) mode, enabling per-cell oper-
ations as well as value transfers to neighboring cells and “inter-
plane” communications. CPAs generally consist of several
processing elements (PEs), typically one per cell, augmented
with one or more registers (constituting the data planes). A
central instruction-dispatcher loads instructions into each PE.
CPAs come in programmable versions and might also embed a
light-sensitive register allowing focal-plane computation, i.e.,
computation and image acquisition are done at the same place.
The CPA architecture avoids the major traditional bottleneck
of transmitting acquired data to one or more processing units
through a bus of limited bandwidth.

In the previous section we pointed out the local and
homogeneous nature of the computations happening in the
IVM. Locality is the key property allowing us to perform
the computations at each pixel location (each cell) in parallel,
and thanks to homogeneity it is possible to execute the same
instruction at each of these locations. The CPA architecture is
clearly a good match for the IVM algorithm.

B. Demonstrating the feasibility with an implementation of the
model on APRON

APRON [5] is a software environment designed to ef-
ficiently simulate CPAs. It allows modelling, design, and
prototyping of customised CPA-architectures as well as the
simulation of CPA algorithms. The simulator mainly consists
of two components: the simulation core, which provides a
virtual CPA, and the IDE, a suite including a compiler,
simulator and graphical user interface. The core can be fed
with a machine-level instruction code word (ICW) stream
which is then executed. The compiler transforms a custom
language, APRON-script, into an ICW stream to be passed
to the simulator. The simulator uses the core to execute the
ICW stream in an interactive mode, allowing code inspection
and debugging. One feature of APRON is the ability to
specify custom translation rules to generate different ICW
streams that “can be delivered to other applications, and even
hardware devices” [5]. However, to execute these ICW streams,
customised simulation cores must be provided.

APRON allows us to create registers. A register corre-
sponds to one of the data-planes visible in Figure 1. Operations
on such registers are always executed in parallel, element-wise
on the data at that (x, y) position in the register. To illustrate
this local mode of operation, as well as the communication
feature of CPAs which enables cells to communicate with their
neighbors, we exhibit the following APRON-script implemen-
tation of Equation (2), which computes part of the gradient
and then uses a previously defined macro to blend it.

// Shift intensity map to the right
r[r_temp] = shift.west(r[r_iMap],0)
// Substract intensity map
r[r_temp] = r[r_temp] - r[r_iMap]
// Blend (Message-passing procedure)
r[r_gxMap] = f_blend(r[r_temp], v_ItoGEta)

A nice aspect of APRON is that it allows us to write
code abstracting ourselves away from just targeting a single
CPA chip. Hence, it is perfectly suited to test how the model
would behave on a general CPA architecture. Operations that
we find are carried out frequently in the model, such as dot
products between local registers, suggest specific capabilities
that could be built into future dedicated CPA hardware, and in
the meantime could be implemented with custom translation
rules and simulation cores.

C. Results

We show results of the inference performed in the APRON
simulator in Figure 3, and present the required resources for
the implementation in Table I. These numbers can help if one
is estimating the approximate frame rate or power consumption
to be expected when targeting a particular CPA device.

2063

Authorized licensed use limited to: Stanford University. Downloaded on March 27,2021 at 01:04:51 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

Fig. 3: Simulation results on the APRON simulator. (a) 25ms of
binned events produced by a DVS128 [4], the only input to our
simulation. Red represents “+1” events and blue represents “-1”
events. (b) The inferred spatial gradient. The vector angle is color-
coded by the hue. (c) The inferred optic-flow, again encoded by hue.
(d) The inferred intensity.

D. Moving towards a chip implementation

APRON does not impose any constraints on the size or
number of registers; it stores floating point values and virtually
any kind of arithmetic operation can be performed. A real
chip in contrast has only a limited number of analog and
digital registers, with poor precision compared to floating point
numbers. Also, PEs have a reduced set of arithmetic operations
built into their circuitry, for example, division is typically
unavailable. Further hardware issues include systematic errors
resulting from the analogue components. Some of these issues
can be resolved by using more complex instruction sequences
so that these systematic errors cancel each other out, but any
remaining such issues will have to be analyzed with respect
to their effect on performance.

Another difference between the simulation we ran and the
CPA vision-chips we consider is the nature of the input to the
network: The simulation used intensity-change events while
the vision chips report light intensity directly. However, this
does not pose a problem for the CPA chips, since the time
derivative of light intensity can be provided directly from the
light intensity values of successive frames.

IV. FUTURE WORK

The model we describe in Section II can easily be extended
to account for translations in addition to the current estimation
of its rotation. Because translation induces motion-parallax, the
optic-flow ~Fx,y would have to be decomposed into a scene
shift component ~Sx,y , serving the same role as the optic flow

TABLE I: Required hardware resources in APRON to implement the
interacting visual maps. “#ops” is the number of instructions used per
relation. “#registers” is the total number of registers used per PE for
the target quantity. “#add’l registers” is the number of registers used
to store temporary results of computations, reused by all calculations.

Quantities #registers Relations #ops #add’l registers
Ex,y 1 Vx,y ← Ex,y 5 temp. 5
Vx,y 1 ~Gx,y ← Vx,y, ~Fx,y 33
Ix,y 1 ~Fx,y ← Vx,y, ~Gx,y 33
~Gx,y 2 ~Fx,y ← ~R, ~Cx,y 53
~Fx,y 2 ~R← ~Fx,y, ~Cx,y 40
~R 0 Ix,y ← ~Gx,y 28
~Cx,y 9 ~Gx,y ← Ix,y 30

map ~Fx,y in the current system, plus a perspective component
~Px,y , which would contain the effects of motion parallax,
being connected to a depth map Dx,y and a global translation
vector ~T . Because of the design of the model, as outlined in
Section II-C, adding these components will not require the
development of a new algorithm, but simply a single parallax
equation. Being able to infer the relative depth as well as
the full six-degree-of-freedom ego-motion are the next steps
toward achieving a full visual odometry system.

V. CONCLUSION

Our implementation of the interacting visual maps worked
well in APRON, a CPA simulator, when applied to real-
world data. The system was able to perform joint approximate
inference of visually relevant quantities, such as optic flow
or brightness, based on visual input from a neuromorphic
dynamic vision sensor. This is the first step toward extending
the model to a full visual odometry system able to run on a
real CPA chip meeting real-world constraints.

We think that many problems can be similarly cast into
the form of a network of relations, using units representing
physical quantities interconnected by equations encoding their
relationships. This recasting could be beneficial both for model
simplicity and robustness, and for implementability on dedi-
cated architectures like CPAs.

REFERENCES

[1] M. Cook, L. Gugelmann, F. Jug, C. Krautz, and A. Steger, “Interacting
maps for fast visual interpretation,” in Proc. of the International Joint
Conference on Neural Networks, IJCNN 2011, Aug. 2011, pp. 770–776.

[2] L. G. Roberts, “Machine perception of three-dimensional solids,” Ph.D.
dissertation, Massachusetts Institute of Technology, Dept. of Electrical
Engineering, Jul. 1963.

[3] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach,
2nd ed. Prentice Hall, 2011.

[4] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15 µs
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[5] D. R. W. Barr and P. Dudek, “Apron: A cellular processor array
simulation and hardware design tool,” EURASIP Journal on Advances
in Signal Processing, pp. 1–9, 2009.

[6] A. Lopich and P. Dudek, “A general-purpose vision processor with
160x80 pixel-parallel simd processor array,” in Proc. of the IEEE Custom
Integrated Circuits Conference, CICC 2013, Sept. 2013, pp. 1–4.

[7] S. J. Carey, D. R. W. Barr, A. Lopich, and P. Dudek, “A 100’000
fps vision sensor with embedded 535 gops/w 256×256 simd processor
array,” in Proc. of the VLSI Circuits Symposium 2013, Jun. 2013, pp.
C182–C183.

2064

Authorized licensed use limited to: Stanford University. Downloaded on March 27,2021 at 01:04:51 UTC from IEEE Xplore. Restrictions apply.

