
Neural Sensors: Learning Pixel Exposures for
HDR Imaging and Video Compressive Sensing

with Programmable Sensors
Julien N. P. Martel, Member, IEEE, and L. K. Müller, and S. J. Carey, and P. Dudek, Senior Member, IEEE ,

and G. Wetzstein Senior Member, IEEE

Abstract—Camera sensors rely on global or rolling shutter functions to expose an image. This fixed function approach severely limits
the sensors’ ability to capture high-dynamic-range (HDR) scenes and resolve high-speed dynamics. Spatially varying pixel exposures
have been introduced as a powerful computational photography approach to optically encode irradiance on a sensor and
computationally recover additional information of a scene, but existing approaches rely on heuristic coding schemes and bulky spatial
light modulators to optically implement these exposure functions. Here, we introduce neural sensors as a methodology to optimize
per-pixel shutter functions jointly with a differentiable image processing method, such as a neural network, in an end-to-end fashion.
Moreover, we demonstrate how to leverage emerging programmable and re-configurable sensor–processors to implement the
optimized exposure functions directly on the sensor. Our system takes specific limitations of the sensor into account to optimize
physically feasible optical codes and we evaluate its performance for snapshot HDR and high-speed compressive imaging both in
simulation and experimentally with real scenes.

Index Terms—high-dynamic range imaging, video compressive sensing, high-speed imaging, programmable sensors, vision chip,
deep neural networks, end-to-end optimization

F

1 INTRODUCTION

MOST contemporary digital cameras rely on a common
working principle inherited from their analog ances-

tors: They capture an image by exposing photo-sensitive
elements for a fixed exposure time. In modern digital sen-
sors, this is either implemented using a global or a rolling
shutter. In either case, the fixed exposure time of current
sensors severely limits their ability to record natural scenes
that exhibit a high dynamic range (HDR) or fast motion.

Computational photography has enabled us to overcome
some of these challenges using optical coding strategies and
computational image reconstruction. For example, HDR im-
ages can be recovered from multiple different exposures [1],
[2] or from a single image with spatially varying pixel expo-
sure [3], [4], [5]. Similarly, high-speed video can be estimated
from a single image recorded with a per-pixel coded expo-
sure [6], [7], [8], [9], [10]. However, these techniques have
two drawbacks. First, they usually employ either heuristic
or random optical coding strategies, which are suboptimal.
Second, they typically require a high-speed spatial light
modulator (SLM) to implement the optical coding. SLMs
are expensive, they create bulky device form factors when
integrated into an imaging system, and it is challenging to
precisely align them at the required accuracy with respect
to the sensor. To mitigate these shortcomings, specialized
sensors have been designed for applications in HDR [11],

• J. N. P. Martel and G. Wetzstein are with the Department of Electrical
Engineering, Stanford University, Stanford, CA 94305, U.S.A.
E-mail: jnmartel@stanford.edu

• L. K. Müller is with IBM Research Zürich, Rüschlikon, 8803 ZH,
Switzerland

• S. J. Carey and P. Dudek are with the School of Electrical and Electronic
Engineering, The University of Manchester, Manchester, M13-9PL, U.K.

Physical Layer Digital Layer

Bottleneck Sensor

Neural Network

...

High Speed
Imaging

HDR
Imaging

Error Backpropagation
Captured, Coded Measurements

Reconstruction

Frame 0 Frame 2 Frame 4 Frame 8 Frame 12 Frame 16

Fig. 1. Illustration of our end-to-end neural sensor framework. The
exposure program of a sensor (physical layer) is learned end-to-end with
a decoder (digital layer) for applications like video compressive sensing.
Here, we show a single coded exposure captured with our prototype
camera and several frames of the high-speed video reconstructed from
this image showing an exploding balloon.

[12], [13] or high-speed imaging [14], [15]. However, these
devices cannot be easily reconfigured for other applications.

Here, we propose an end-to-end optimization strategy
for jointly learning spatially varying pixel exposures and
neural network–based image reconstruction algorithms for
HDR and high-speed imaging. Rather than implementing
these optical codes using SLMs, we build on emerging focal-
plane sensor–processors [16], [17] that offer simultaneous
sensing and processing capabilities in each pixel. These
massively parallel, fine-grain processing capabilities allow
us to control the specific exposure code electronically in
each pixel. As illustrated in Figures 1 and 2, our system

Real-world

Data

Update

with
Loss

Encoder DecoderTraining

Inference

Physical Layer Digital Layer

HDR &
High-speed
Imaging

C
om

p
ile

Simulated
shutter

Reconfigurable
sensor

Pixel
response

C
op

y

M
od

el

Fig. 2. Diagram of the proposed neural sensor system. During the training phase (top row) an electronic encoder—spatially varying pixel
exposures parameterized by φ—is jointly optimized with a digital decoder—a neural network parameterized by ψ—in simulation using an application-
specific loss function L. The optimized shutter functions are compiled into a pixel code that is uploaded on the programmable sensor. During
inference (bottom row), the sensor captures images by applying these exposure functions and the pre-trained network recovers the final image.

learns the optical coding strategies for a given application in
simulation. This training phase accounts for the specific re-
strictions of a sensor–processor, which may limit the degrees
of freedom of a feasibly shutter function. After training,
the optical codes are compiled into an instruction set that
is uploaded onto the reconfigurable sensor, which executes
these shutter functions during inference. Our approach can
be interpreted as an optical encoder, digital decoder system
where the sensor implements the physical coding layer and
a differentiable algorithm represents the digital decoder.

With this end-to-end neural sensor approach, we make
the following contributions:

• We introduce the idea of learning the “sensing” strat-
egy of a camera in an end-to-end fashion. Specifically,
we present a differentiable neural sensor model to
jointly optimize spatially varying pixel exposures
and image processing networks.

• We demonstrate that this learned optical coding com-
pares favorably to baselines with random coding for
video compressive sensing and HDR imaging.

• We implement a prototype focal-plane sensor–
processor with learned pixel exposures and we eval-
uate it with the aforementioned applications.

2 RELATED WORK

HDR Imaging and Video Compressive Sensing:
The limited dynamic range of conventional active pixel sen-
sors has been addressed by a number of computational pho-
tography approaches. For example, several low-dynamic-
range images can be recorded and computationally fused
into a single HDR image [1], [2], [18], [19], [20]. However,
capturing multiple images sequentially or with multiple
sensors has several drawbacks, including challenges in deal-
ing with motion and system calibration. As an alternative,
several single-shot approaches have been introduced [3], [4],
[5], [21], [22], [23], [24]. These systems either use external
spatial light modulators (SLMs), neutral density (ND) filter
arrays on the sensor, or varying ISO modulation to control

the pixel exposures. A post-capture HDR image reconstruc-
tion step is required for most of these approaches. Unfortu-
nately, none of these methods seems practical because SLMs
are expensive and difficult to integrate robustly into an
imaging system, ND filters require the sensor to be altered
permanently, and spatially varying ISO is only available
with very limited types exposure patterns. High-framerate
compressive imaging and compressive video sensing have
also been widely studied [6], [7], [8], [9], [10], [25], [26],
[27], [28], [29], [30], [31] and prototyped by implementing
high-speed coded exposures using various types of SLMs.
Inspired by all of these methods, we propose an end-to-end
framework that allows us to jointly optimize the spatially
varying pixel exposures and reconstruction algorithms of
HDR or high-speed imaging. Compared to the random or
heuristic codes used in previous work, we demonstrate that
optimized coding strategies for these applications signifi-
cantly improve the image quality.

The closest approach to our proposal is the concurrent
work by Iliadis et al. [32]. This approach also uses a neural
network to optimize the binary coding patterns for video
compressive sensing. However, our work takes this idea one
step farther in optimizing physically realizable pixel expo-
sures for emerging programmable sensors and we evaluate
our system in detail with a prototype sensor that does not
rely on any external SLMs or ND filters to perform the opti-
cal exposure coding. Our system is the first to demonstrate
both coded HDR imaging and video compressive sensing
on a practical sensor with programmable pixel exposures.

Exotic Sensors: A plethora of unconventional sen-
sors has been explored in previous work. For example,
HDR imaging has been demonstrated with multiple ex-
posures built into the pixels [11], [12], using events to
signal overflow of the pixel buffer and reset it [33], using
precomputation on the focal plane with spatially varying
and adaptive exposures [34], [35], [36], using multiple
photodiodes with various gains in each pixel [37], or using
logarithmic compression at the photosensor [38], as well as
many other approaches [13], [39], [40], [41]. Per-pixel coded
exposures have also been realized in several dedicated sen-

sors [42], [43], [44], [45], for example with applications to
video compressive sensing. Finally, dynamic vision or event
sensors [46], [47], [48] have been demonstrated to achieve
high-dynamic range and high-speed imaging. However, the
image quality achieved with all of these sensor technologies
is fundamentally limited by their fixed function pipeline.
None of them offer dynamically re-programmable pixel
exposures.

Programmable and Reconfigurable Sensors: A
rapidly increasing number of sensors provide unprece-
dented processing capabilities by co-locating both sensing
and processing electronics in their pixels. This class of
sensors has been coined near-focal-plane sensor–processor [16].
These devices were first designed with low-level image pro-
cessing capabilities in mind [49], [50], [51] before being de-
veloped to provide some level of programmability [52], [53],
[54], [55], [56]. Nowadays, the idea of embedding processing
capabilities inside a pixel has (mostly) been instantiated in
very high-frame rate sensors that can have complex in-pixel
analog-to-digital conversion (ADC) with a limited amount
of processing [14], [15]. Nevertheless, a few sensors such
as SCAMP-5 [17] offer fully programmable pixels, and have
been used in applications such as depth-from-focus [57], fea-
ture extraction [58] or ego-motion estimation [59]. Here, we
introduce an end-to-end optimization paradigm to jointly
designing the spatially varying pixel exposures offered by
emerging sensor–processors and neural network-based im-
age reconstruction frameworks for applications in HDR and
high-framerate imaging. Our work paves the way for a new
class of neural sensors with optimized application-specific
capabilities.

End-to-end optimization of optics and image pro-
cessing: Although the co-design of optics and algorithms
is one of the core ideas behind computational photog-
raphy, programming tools with automatic differentiation
capabilities have only recently enabled a true joint design
of hardware and software. This idea has previously been
explored for a number of applications, such as color imaging
and demosaicing [60], extended depth of field imaging [61],
depth imaging [62], [63], image classification [64], and HDR
imaging [65]. While the key idea of end-to-end optimization
of camera parameters and algorithmic processing is similar
in these approaches and ours, to our knowledge we are the
first to propose a learning strategy for the spatially varying
pixel exposures of a programmable sensor–processor.

3 END-TO-END OPTIMIZATION OF PIXEL EXPO-
SURES AND IMAGE RECONSTRUCTION

In this section, we develop a mathematical framework for
end-to-end optimization of spatially varying pixel expo-
sures and a differentiable reconstruction algorithm, such as
a neural network. We interpret this system as an electronic
encoder, digital decoder system (see Fig. 1).

3.1 Modeling Pixel Exposures as an Encoder

We consider an exposure model in which a pixel at position
(i, j) on a sensor array integrates the incident irradiance Li,j

represented as:

class

class

class

class

class

Fig. 3. A diagram illustrating different shutter functions. The top
diagram shows how we represent a shutter function: A solid line on a
given slot n indicates that for this slot: Si,j [t + n δt] = 1, otherwise
Si,j [t+n δt] = 0. The bottom rows show four classes of shutter functions
(from the simplest to the most general). For each class, four examples of
shutter functions for different pixels are represented by different colors.

over the exposure time ∆t as

Ei,j(t) =

∫ t+∆t

t
Li,j(t

′) dt′. (1)

Here, Ei,j is the exposure, and relates to an image as
Ii,j(t) = R (Ei,j(t)) in which R is the camera response
function, and Ii,j is the reported intensity value of each
pixel.

Following recent work on coded and compressive imag-
ing (see Sec. 2), we introduce a shutter function S that
modulates pixel (i, j) throughout its exposure time:

Ei,j(t) =

∫ t+∆t

t
Li,j(t

′) · Si,j(t′) dt′. (2)

In our work, we primarily consider binary shutter functions
Si,j defined on N discrete time slots. Thus, we rewrite Equa-
tion (2) as

Ei,j =
N−1∑
n=0

Li,j [n] · Si,j [n] . (3)

A common approach is to write this discrete model as a
matrix–vector multiplication E = SL, where E ∈ RM is the
vectorized form of the measured exposure of all M pixels,
L ∈ RMN is the vectorized form of the temporally varying
irradiance incident on all pixels, and S ∈ RM×MN is the
measurement matrix. Due to the fact that S often has fewer
rows than columns, and is thus not invertible, a compressive
sensing approach is commonly applied to estimate L from
E using some form of sparsity-based regularization.

Here, we adopt a slightly different notation that repre-
sents the shutter functions in a parameterized way. Specifi-
cally, we assume that these functions are fully described by
a set of parameters φ, such that we can define an encoding
operator Sφ : RMN → RM to represent Equation 3. This
operator can represent several different classes of shutter

functions, each defined by their own limited degrees of
freedom, as illustrated in Figure 3.

We consider scenarios in which each pixel (i, j) on the
sensor can realize its own shutter function, hence there is
a set of parameters φi,j for each pixel. We further assume
that the shutter functions do not vary from one expo-
sure to another. The most general class of such shutter
functions defines each time slot as either “on” or “off”
and thus consists of N free parameters for each pixel
Si,j [n] ∈ {0, 1},∀n ∈ {0, ..., N − 1} (see class (e) in the
last row of Fig. 3).

3.2 Recovering an Image with a Decoder

To estimate the irradiance from the coded measurements,
we use a differentiable reconstruction algorithm or decoder
Dψ : RM → RMN , which is defined by the set of parameters
ψ. Given a pre-trained encoder–decoder, one would capture
measurements with the corresponding shutter functions
E = Sφ (L) and then estimate the irradiance as L̂ = Dψ (E).
This is commonly referred to as the inference stage.

To determine an optimal set of parameters {φ, ψ}, we
train the encoder–decoder end-to-end with some dataset
containing K ground truth irradiance maps using the loss
function L by minimizing the following objective function
with some variant of stochastic gradient descent:

arg min
{φ,ψ}

K∑
k=1

L
(
Dψ ◦ Sφ

(
L(k)

)
, L(k)

)
. (4)

This is a self-supervised learning scenario in which the
encoder implements a physically feasible shutter function
and the decoder recovers the image. Note that both encoder
and decoder are jointly optimized in this case, so the opti-
cal codes parameterized by φ influence the reconstruction
algorithm ψ and vice versa. Moreover, the optimal choice
of both encoder and decoder depends on the loss function,
which could be a low-level image metric, such as mean
squared error (MSE), or a higher-level loss such as image
classification accuracy.

The encoder–decoder system presented here is some-
what generic and could be applied to many different coded
computational photography problems. In the following, we
discuss how to incorporate specific constraints of our pro-
grammable sensor and model them in a differentiable way
using the encoder Sφ. We also discuss different choices for
the decoder Dψ for the specific problems of HDR and high-
speed compressive imaging.

4 DIFFERENTIABLE & PROGRAMMABLE SENSOR–
PROCESSOR

4.1 A Programmable Sensor–Processor

To implement the optimized shutter functions we use
SCAMP-5 [17], a reconfigurable near-focal plane sensor–
processor. The sensor–processor is a 256 × 256 pixel array.
Each pixel contains a photo-sensitive element collocated
with a general purpose programmable Processing Element
(PE).

Each PE consists of a simple Arithmetic Logic Unit
(ALU) implemented with a mixed-signal circuit along with

Algorithm 1: Pseudocode for the implementation
of our framework on a near-focal plane processor
The for-loops highlighted in grey can be thought as
“parallel-for” executed by compute kernels. PIX is
the photosensitive element, whose value is at any
instant the integrated value of irradiance from the
last reset (one can alternatively think about every
inner loop incrementing PIX as seen in the comment
in the pseudocode).

for all pixels (i, j) do
Ci,j ← f(Si,j)

for all frames do
for all pixels (i, j) do

Framei,j ← 0
for all slots n ∈ {0, ..., N − 1} do

for all pixels (i, j) do
if g(Ci,j ;n) = 0 then

PIXi,j ← 0
else if g(Ci,j ;n) = 1 then

Framei,j ← Framei,j + PIXi,j
// PIXi,j ← PIXi,j + Li,j(t) · δt

Readout Frame

a few memories. Those are 7 analog memories as well
as 13 single bit digital memories. Analog memories can
store values from the photo-sensitive element as well as the
results of analog operations carried out by the ALU. Digital
memories on the other hand can be fed by the output of
a comparator acting on the analog memories as well as set
and cleared by dedicated instructions.

The integrated value of a photo-sensitive element (since
its last reset) can be read out non-destructively at any point
in time. It is thus possible to “sense” and “compute” simul-
taneously. The SCAMP-5 vision chip we use is harnessed by
an NXP LPC4357 micro-controller, dispatching instructions
to the vision chip, reading out data, and acting as a server
when communicating with an external computer.

Code executed by the micro-controller harnessing the
vision-chip is written in C++, code that is dispatched to
the vision-chip is written in a Domain Specific Language
(DSL) in the form of what can be thought as “compute
kernels” executed in parallel by all the pixels’ PE on their
local piece of data following the Single Instruction Multiple
Data paradigm. These compute kernels consist of a set of
macros and high-level instructions. An example of such a
high-level instruction is transferring the content of an analog
memory to another.

Each high-level instruction from the DSL compiles down
to a stream of instruction code words (ICW) in a syntax
directed translation fashion, i.e. the parser drives the gener-
ation of the ICW stream. This ICW stream can be thought of
as microcode that indicates at each instruction clock, which
“gates” are to be switched on chip to, say, write the content
of a cell implementing an analog memory to another.

4.2 Implementation and Execution of Shutter Func-
tions
In our implementation, at boot up, each pixel is distributed
a pixel code Ci,j ∈ N, that we also represent as a vector of B

TABLE 1
Pairs of encoding and decoding functions for certain class of shutter functions For compactness we denote the max rectifier
x+ = max(x, 0) and the min rectifier x− = −min(x, 0) as well as the backward difference operator ∇x[n] = x[n]− x[n− 1].

Class f(S) B = |C| (bits) g(C;n)

(a) - 0 1

(b)
∑N−1
n=0 S[n] logN H(C − n)

(c)
∑N−1
n=1 n(∇S[n])+ logN Π

(
L ·
(
n + 1

2

)
− C
)

(d)
∑N−1
n=1 n · (∇S[n])+ + N

∑N−1
n=1 n · (∇S[n])− 2 logN H (n− (C modN)) ·H((C/N)− n)

(e)
∑N−1
i=0 S[i] 2i N projn(C) = bC · 2−nc mod 2

bits: Ci,j = {0, 1}B which stores an encoding of the shutter
function Si,j at the pixel level through the function:

f : {0, 1}N → N (5)
f(Si,j) = Ci,j .

For each frame, during the exposure ∆T , the microcon-
troller dispatches N times, to all the pixels, a global sig-
nal occurring precisely at the beginning of each slot. The
signal is an integer corresponding to the slot number
n ∈ {0, ..., N − 1}. All the pixels’ PE evaluate, in parallel,
some decoding function g of the pixel code and of the global
signal (the slot number):

g : N× {0, ..., N − 1} → {0, 1} (6)
g(Ci,j ;n) = pi,j,n.

The function g encodes the state pi,j,n the pixel (i, j) should
be in for the timeslot n. When g(C;n) = 1 the pixels turns
“on”, while g(Ci,j ;n) = 0 it is switched “off”. The pair of
encoding function f and decoding function g depends on
the particular class of shutter function we implement and
has to satisfy the identity:

g
(
f(Si,j), n

)
= Si,j [n] ∀(i, j), ∀n, (7)

in order to be correct. These encoding/decoding pairs are
not unique as we shall see in the following. A pseudo-code
summarizing how our exposure program is implemented on
our device is given in Algorithm 1. Note that the encoding
function f is executed only once, at boot up, and does not
need to be computed in-pixel: it can be precomputed (in the
microcontroller) and distributed to the pixel, simply setting
its digital memories. Therefore, it can be arbitrarily complex.
On the other hand, the decoding function g needs to be
simple enough that it can be evaluated by the pixel ALU.
In all our implementations, the function g can be expressed
as a few digital comparisons and simple digital operations
(requiring only using a few OR and NOT evaluations, which
are the two gates “natively” built-in the pixel ALU). Further-
more, since each pixel has a limited memory, there exists
a trade-off between the complexity of the shutter function
against its time-resolution, i.e the number of slots it runs on.

4.3 General Shutter Functions
Shutter functions can be classified according to their com-
plexity as well as their intended use: for HDR, for high-
speed etc. The next subsections describe the classes outlined
in Figure 3 and Table 1 in detail.

The most general class of shutter functions that can be
defined on N slots prescribes independently for each slot

whether the shutter is “on” or “off” at pixel (i, j) (class (e)
in Table 1) . Using such a general class of shutter functions,
a system can only use N = B slots, constrained by the
number of bits B that can be locally stored in each pixel
digital memories. On SCAMP-5 this means we cannot use
more than 13 slots.

Class (e): Such a shutter function can be parameter-
ized by a vector φ(e)

i,j
∈ {0, 1}N . The nth entry of this vector

states whether the shutter is on (1) or off (0) at slot n:

S
(e)
i,j [n] =

N−1∑
n′=0

φ(e)

i,j
[n′] δ[n− n′], (8)

in which δ[n] is the discrete delta function. Examples of
such class (e) functions for different pixels are illustrated in
Figure 3. The parameters to be learned for our encoder are
these vectors φ(e)

i,j
for all pixels. A natural encoding function

f is the conversion of this binary code in an integer:

f (e)(Si,j) =
N−1∑
n=0

Si,j [n] 2n. (9)

The decoding function g is simply the projector function that
selects the nth bit of Ci,j :

g(e)(Ci,j ;n) = projn(Ci,j)
= Ci,j [n] = bCi,j · 2−nc mod 2. (10)

4.4 Structured Shutter Functions
Less “general” (more structured) shutter functions typically
require an encoding on fewer bits, allowing us to implement
longer shutter functions, with more slots! Hence, for a fixed
code length B, there is a trade-off: one can describe long
simple shutter functions, or arbitrarily complex (random)
but short shutter functions. Indeed, regularities in the shut-
ter function can be used by the encoding and decoding
functions. Examples of such longer but simpler shutter
functions are functions of class (b),(c),(d) as illustrated in
Figure (3). These are the functions we use for HDR imaging–
class (b)–and high frame rate imaging–class (c), (d) and (e).

HDR Imaging
A first use-case for learning optimized shutter functions is
high-dynamic range imaging. We assume the imaged scene
does not move (much) throughout the exposure time of a
single frame. In this scenario, even if we consider shutter
function consisting of multiple “on” bumps interspersed
during the whole exposure time ∆t, this is equivalent to
consider a shutter function in which those were contiguous

and the shutter function for a pixel starts “on” at n = 0
and goes “off” after some amount of time. This is because,
assuming Li,j [n] = Lcst. for the whole ∆t = N · δt we can
rewrite Equation 3 as:

Ei,j = Lcst.

N−1∑
n=0

Si,j [n] = Lcst. φ
(b)
i,j , (11)

which is independent of the position of the “on” bumps
in the shutter function and simply weighs the incoming
irradiance Lcst. by the amount of time φ(b)

i,j =
∑N−1
n=0 Si,j [n]

the shutter is “on”. Hence, those can be parameterized with
a single parameter corresponding to this “weight”. This
class of shutter functions is one of the simplest (it has only
one parameter to learn for each shutter function) but can
certainly achieve HDR imaging as different pixels (i, j) will
learn different shutter functions corresponding to different
exposure times controlled by φ(b)

i,j .
Class (b): Specifically these functions can be param-

eterized by starting the exposure in the “on” state at n = 0
and using the single parameter to encode when the shutter
should stop. These are functions of class (b) in Figure 3. This
parametrization of Si,j is the horizontally flipped Heaviside
function H shifted by φ(b)

i,j on the time axis:

S
(b)
i,j [n] = H(φ

(b)
i,j − n). (12)

Since a function of class (b) only needs to encode the slot
number at which a pixel stops integrating, if we consider
such a function defined on N slots, only B = logN bits are
required to encode that number. Another way to see this,
is that with B available digital memories one can store a
number that addresses 2N slots. This is obviously greater
than the N slots one could implement for a function of class
(e), the most general class. An encoding function for this
class can be written as:

f (b)(Si,j) =
N−1∑
n=0

Si,j [n]. (13)

Given all the bits of Si,j are 0 after a given nend that encodes
the end of integration, f just encodes nend as an integer.
As a consequence the paired decoding function can simply
encode Ci,j = φ

(b)
i,j and be:

g(b)(Ci,j ;n) = H(Ci,j − n). (14)

Video Compressive Sensing

We further experimented with a class of shutter functions
for high frame rate imaging. In general, it is possible to
reconstruct a video sequence at high frame rate from a
single frame as long as the shutter functions start at different
offsets (and eventually stop at different offsets) within the
exposure. Indeed, if all shutter functions at all pixels were
to start at the same point in time n = nstart, and would
stop, say at nend, it would be impossible to reconstruct the
irradiance out of the time interval [nstart, nend] based on
some real, captured information.

Quantizer

Noise

Irradiance

Shutter

Encoder

learning
signal

C
o
m

p
ile

Simulated shutter

shutter
class

Pixel response

Fig. 4. A zoomed-in diagram of the encoder. This diagram illustrates
the implementation details of our encoder for a given pixel (i, j) and a
single parameter φi,j . The learned parameter is the real-valued φ̂i,j .
The quantized parameter φi,j is the one compiled on the sensor in
Ci,j = f(Si,j).

Class (c): Thus, the simplest class of shutter functions
one can implement is obtained by offsetting the starting
point of the shutter functions of each pixel, and exposing
a single time, for a fixed duration L. The shutter is “on” for
a fixed amount of time L and then goes “off” for the rest of
the exposure duration. This can be described using a single
parameter φ(c)

i,j (for instance the start time nstart) and can be
parameterized as:

S
(c)
i,j [n] = Π

(
L ·
(
n+

1

2

)
− φ(c)

i,j

)
, (15)

in which Π is the rectangle function centered in 0, and
Π(x) = 1 when x ∈ [−0.5, 0.5] and 0 everywhere else.
Such shutter functions belong to class (c) as illustrated
in Figure 3. They also require B = logN bits for their
encoding, as they can also be described by a single free
parameter as in Equation (15), in which φ(c)

i,j represents the
slot number when the integration starts. Since there is a
single subexposure of a fixed duration L that is prescribed a-
priori, the slot at which the pixel stops integrating is simply
nend = nstart+L. Note that, alternatively, the function could
be encoded by the time slot at which integration stops,
which makes no difference, but shows that these encod-
ing/decoding pairs are not unique. An encoding function
for this class can be written as:

f (c)(Si,j) =
N−1∑
n=1

n ·max (Si,j [n]− Si,j [n− 1], 0) , (16)

which simply encodes the starting slot as an integer,
while a decoding function is again simply reflecting the
parametrization of the shutter function, with Ci,j = φ

(c)
i,j :

g(c)(Ci,j ;n) = Π

(
L · (n+

1

2
)− Ci,j

)
. (17)

Class (d): For more complex behavior, one can add a
second parameter to this shutter function. This parameter
encodes, for instance, the end time nend of the “bump”
instead of integrating at each pixel for a fixed time L.
Since all the bumps have different durations (in addition
of being offset) this might be beneficial when the aim is

measurement ground truth
reconstruction
(tone mapped)measurement ground truth

reconstruction
(tone mapped)

lo
w

 e
x
p
o
su

re

ground
truth (HDR) LDR

class (b)
non-opt.

class (b)
optimized

h
ig

h

e
x
p
o
su

re

other scenes with class (b) optimized

Fig. 5. HDR results in simulation. On the right pane: the images show ground truths, measurements and reconstructions for different HDR scenes
captured with shutter functions of class (b) in simulation along with some baseline comparisons. The left pane shows other scenes captured with
optimized shutters of class (b).

to recover HDR information in addition to high-frame rate
reconstruction. A parameterization for such functions is:

S
(d)
i,j = H(n− φ(d),1

i,j) ·H(φ
(d),2
i,j − n), (18)

effectively realizing a rectangle function with two Heaviside
(one is flipped) shifted respectively by the two parameters
nstart = φ

(d),1
i,j and nend = φ

(d),2
i,j .

These shutter functions correspond to class (d) in Fig-
ure 3. In this case, two integers (nstart, nend), need to be
encoded (and decoded) in a single integer C. This can easily
be done by the use of a pairing function. Thanks to the
constraints: nstart < N and nend < N , one can choose a
very simple pairing, for instance relying on the uniqueness
of the Euclidean division: C = nstart + nend ·N , the pairing
inversion is nstart = C modN and nend = bC/Nc. An
encoding we propose is:

f (d)(Si,j) = nstart +N · nend, (19)

with, nstart =
∑N−1
n=1 n · max(S[n] − S[n − 1], 0), and,

symmetrically: nend = −
∑N−1
n=1 n ·min(S[n] − S[n − 1], 0)

that both capture the start and end time of the subexposure
bump making use of the sign of the forward difference of
Si,j . This time, the decoding is less trivial, and uses our
pairing inversions:

g(d)(Ci,j ;n) = H(n− Ci,j modN) ·H(n− Ci,j/N), (20)

which is very simple to perform in hardware.

4.5 Learning with Non-differentiable Encoders Sφ
When it comes to learning the parameters φi,j of our en-
coders, there are two main difficulties to address. A first
challenge is that we consider binary shutter functions. This
is because it simplifies their implementations in electronic

by a simple switch instead of a variable, continuous gain:
All the shutter functions we presented implement some
kind of hard thresholding (using Heaviside, rectangle, or
projection functions). A hard threshold does not yield useful
gradients for training. A second, and major difficulty is that
the domain of the parameters φ is discrete: the parameters
for all the shutter functions we presented essentially encode
the slot at which sub-exposure bumps start and stop.

In the neural network literature, settings in which the
outputs of neurons (the analog of our shutter functions) are
binary and their weights (the analog of our parameters)
are quantized are more difficult to optimize and require
some tricks, we adopt similar methods to [66], using a
real variable φ̂i,j optimized during training and, quantized
in the discrete φi,j during the forward pass as shown in
Figure 4.

4.6 Modeling of the Encoder: Noise and Pixel Re-
sponse
Despite the fact we learn the encoder on real data, this
data has not been captured by our sensor. Since we aim
at compiling the shutter functions on our real-system, it is
crucial the encoder trained in simulation models the oper-
ation of our sensor-processor closely enough. In practice,
we consider two aspects: First the pixel response function
is approximately linear and saturates, also it is quantized
(the sensor reports 8-bits images). Secondly, performance
in the reconstruction is increased when using noise. We
model both the response function of the sensor and noise
in the encoder. Noise is modelled both in the quantization
step of the real parameter we optimize over (modelling the
fact the shutter function might not be realized correctly),
and in the sensor capture (on the incoming irradiance). The
implementation of our encoder is illustrated in Figure 4.

Class (c) Class (e)
measurements reconstructed frames

0 4 8 12 16
measurements reconstructed frames

0 4 8 12 16

Fig. 6. Video compressive sensing results in simulation. These images show individual coded images (measurements) along with the
reconstructed video clips for several high-speed scenes in simulation, using shutter functions of class (c) and (e).

4.7 Neural Network Architectures Dψ

We use two types of DNN models implementing Dψ

through our experiments: Fully-Connected Neural Net-
works (FC-nets) as well as Convolutional Neural Networks
(CNNs) architectures.

Setup for Fully-Connected Networks: A major chal-
lenge in using FC-nets is to keep the number of parameters
reasonable. Concretely, for a M = R × C coded exposure
produced by our sensor, the first layer of the FC-net would
need to contain R · C input neurons, while the output
would need to consist of M · N = R · C · N neurons,
which means the network has R2 · C2 · N parameters not
even assuming a hidden layer! For a modest size 256× 256
image using 16slots this is already 69 million parameters,
which is prohibitively high. Therefore, one cannot consider
whole images as inputs of a FC-net. Instead, to reduce the
number of parameters we consider chopping the image in
smaller patches of size Wp × Hp. To avoid blocky artifacts
that would be created by having each patch reconstructed
independently from its neighbour, we learn our network
on a small tiling of these patches Np × Wp × Np × Hp.
For instance, considering 8 × 8 patches, and a tiling of 2
patches in each dimension, we obtain a 16 × 16 block. The
FC-net is learned on these blocks, and at reconstruction can
be evaluated on each block dividing a whole image, shifted
by the size of a patch. Each patch (apart from the borders)
is covered by Np ·Np overlapping blocks and thus benefits
from Np ·Hp reconstructions that can be averaged together
and thus vary smoothly over the image. A similar approach
is taken in [32].

As a consequence, the parameters φ of the encoder also
need to be shared for each patch. Hence using FC-nets one
can only implement Wp × Hp different shutter functions
Si,j (that are all different within a patch), thus under-using
our sensor-processor that can implement independent pixel-
wise exposures for a whole array.

Setup for Convolutional Neural Networks: Another
way to reduce the number of parameters of our model is to

TABLE 2
Results for HDR imaging. We compare PSNR, SSIM for
non-optimized and optimized codes of different classes.

Experiment Shutter
class

PSNR
(dB)

SSIM

no-coding, LDR - 13.65 0.2834
random code + CSC [23] (b) 28.71 0.6476
random code + U-Net (b) 32.76 0.8904
optimized code + U-Net (ours) (b) 35.42 0.9464

use built-in weight sharing via convolutional architectures.
The main challenge when using CNN based architectures—
that have proven to work well in the problems of image
reconstruction, such as U-Nets [67]—is to match their inputs
and outputs so they can learn the correlations existing
between them in the space they live in. Specifically, in the
high-speed imaging learning scenario, the input is a two-
dimensional coded exposure image, while the output is a
three-dimensional (two dimension and time) sequence of
images. This setting does not “naturally” lends itself to 2D
U-Nets, and would ignore correlations across one of the
dimensions (for instance time if the two first dimensions
are the space dimensions). Hence we lift-up the input coded
exposure image in three dimensions, by copying it in time
(acting like a blur) and applying the shutter function to the
obtained volume. This is a typical trick that can be shown to
be equivalent to applying the transpose of the measurement
matrix to the measurement: L̂ = SᵀE. This is now given
as an input to a 3D U-Net, that sees a blurry volume with
“holes” where data was not captured.

5 RESULTS

5.1 HDR Imaging
For our experiments in simulation, we use 277
irradiance images extracted from HDR Haven
(https://hdrihaven.com), rescaled to a size of 1024 × 512
using bilinear downsampling. For evaluation, 28 are

TABLE 3
Results for video compressive sensing. We compare PSNR, SSIM

for non-optimized and optimized codes of different classes

Experiment Shutter
class

PSNR
(dB)

SSIM

FC
-n

et

non-optimized structured code (c) 27.73 0.9445
optimized structured code (c) 27.78 0.9449
non-optimized structured code (d) 27.85 0.9443
optimized structured code (d) 28.16 0.9449
non-optimized random-code (e) 28.02 0.9430
optimized random-code (e) 28.78 0.9502

3D
U

-N
et non-optimized structured code (c) 32.67 0.9225

optimized structured code (c) 32.87 0.9272
non-optimized random-code (e) 32.19 0.9254
optimized random-code (e) 33.56 0.9374

randomly selected among those. The remaining images
are used for training the 2D U-Net (6 double conv. layers
Conv/ReLU/Conv/ReLU, with 3 × 3 kernels, split by
avg. pooling in the downsampling branch and bilinear
upsampling in the upward branch, the number of kernels
starts at 32 up and grows up to 1024 in each layer with a
growth factor of 2). We feed randomly cropped 256 × 256
sub-images (our sensor size) as input to the encoder
implementing shutter functions of class (b). Inputs are
augmented with different contrast, brightness, rotations
and flips in space. Those networks are trained with ADAM
[68], on an L1 loss computed between the ground truth
HDR images and the HDR output of the network (not tone
mapped), training details are given in our supplemental.
Qualitative results for HDR imaging are shown in Fig 5.

Table 2 shows quantitative comparisons of several snap-
shot HDR approaches. Random optical codes with a con-
volutional sparse coding (CSC) reconstruction algorithm
[23] improve upon the conventional LDR baseline. Random
pixel exposures with our U-Net reconstruction show further
improvements over CSC. Note that the insight that random
coding with a neural network–based reconstruction outper-
forms other snapshot approaches was also recently made
in [24]. Finally, our pixel exposures, learned end-to-end with
the U-Net, perform best in this experiment, outperforming
the best random approach by about 3dB.

In related work [36], the same sensor–processor imple-
ments on-sensor tone mapping resulting in an 8-bit LDR
image. The LDR image it captures cannot be directly com-
pared with the HDR reconstruction technique presented
here, although our results could also be tone mapped.

5.2 Video Compressive Sensing

For high-speed imaging, we train shutter functions of class
(c), (d), and (e) jointly with their decoders with the Need
For Speed dataset [69] using the 100 videos captured at
240FPS. Among those, 10 are randomly selected for evalua-
tion. We trained both FC-nets (4 FC layers of size 4096) and
3D U-Nets (5 double conv. layers Conv/ReLU/Conv/ReLU,
with 3 × 3 × 3 kernels, split by avg. pooling in the down-
sampling branch and bilinear upsampling in the upward
branch, number of kernels starting at 24 up to 768 with
a growth factor of 2 in each layer) as decoders, on the
output of the encoders of the various shutter classes. Inputs

TABLE 4
Baseline comparisons for video compressive sensing Those are
are run on 200 video-clips randomly sampled from the NFS dataset.

Experiment Shutter
class

PSNR
(dB)

SSIM

O
th

er
s Bilinear (rand. code + bilin. interp.) (c) 18.95 0.4133

Thin out (subsamp. + bilin. interp.) n/a 20.65 0.4556
Hitomi et al. [9] (c) 26.22 0.7258

O
ur

s FC-net (optim. structured code) (c) 38.14 0.9555
U-Net (optim. structured code) (c) 32.40 0.8118

class (b)

non-optimized optimized

pixelspixels

timetime
optimizednon-optimized

class (c)

timetime

pixels pixels

class (e)

0%

100%

class (d)

pixelspixels

timetime
optimizednon-optimized optimizednon-optimized

p
e
rc

e
n
ta

g
e
 o

f
w

h
o
le

 e
x
p

o
su

re

Fig. 7. Examples of non-optimized and optimized shutter functions.
Different classes of shutter functions are shown for different pixels, when
optimized and non-optimized. For functions of class (b) we encode in a
grey level image the stopping time of the integrations. For all the other
classes we choose a subset of 8×8 pixels for which we show the shutter
functions in time: black means the pixel is ‘off’, white it is ‘on’.

are 12.5 million randomly selected 16 × 16 × 16 blocks
in the FC-net and full 256 × 256 × 16 images in the U-
Net. Blocks and images are augmented with rotations and
flips in space, and time-reversal. The networks are trained
with ADAM [68], optimizing an L1 loss on the discrepancy
between ground-truth and reconstructed blocks (for FC-net)
and video-clip / space-time volumes (for 3D U-Nets). Other
training details are given in our supplemental. Results com-
paring optimized and non optimized codes across different
shutter classes are shown in Figs 6, 7, 8 and summarized
in Table 3. We also present quantitative comparisons to
various baselines in Table 4. Notably, we evaluate the coded
exposures of Hitomi et al. [9] performed with random codes
and sparse coding reconstructions, on a random subset of
200 videos of our test set. For a fair comparison, we use the
“single bump” shutter functions of class (c), as described
in [9]. We also show a comparison to both “thin out” and
“bilinear” baselines. The thinned out baseline considers the
high-speed ground truth video and subsamples it in space
as much as it is “super-resolved” in time. This emulates a
camera running at high-speed and reading out only a subset
of pixels so as to keep the amount of data it would need
to transmit constant: Concretely the reconstruction of 16
frames in a space-time volume is simulated by subsampling

Class (c) Class (b)

Class (e)

measurements frame 0

measurements

frame 4 frame 8 frame 12 frame 16

frame 0 frame 2 frame 4 frame 6 frame 8

measurements
reconstruction
(tone mapped)

reconstruction
(high exposure)

reconstruction
(low exposure)

reconstructed frames

reconstructed frames

Fig. 8. Experimental high-speed & HDR captures with our SCAMP-5 prototypes. The images show measurements captured with our sensor as
well as reconstructed frames for different class of shutter functions ((b), (c) and (e)) and decoders (FC-net for class (c) and U-Nets for class (b), (e)).
For the HDR images produced using class (b), the tone mapped images are produced using a global tone mapping ITM = IγHDR with γ = 0.5, low
and high exposures are produced by clipping the HDR image to a high and low range: eg Ilow(x, y) = max(min(I(x, y), hlow), llow), ∀(x, y), h > l.

each spatial dimension of a ground-truth frame by 4 before
upsampling the frame again in the reconstruction. This
process involves no coding. The “bilinear” baseline, simply
inpaints the missing information in the randomly coded
space-time volume (before integration) by bilinear interpo-
lation. Qualitative comparisons and additional details of
these baselines are discussed in the supplemental material.

6 DISCUSSION

We presented a method and a system to perform HDR
imaging and video compressive sensing with coded pixel
exposures that can be learned. We think the end-to-end
learning of the components of the imaging pipeline is a
useful paradigm, ultimately these components should all
be jointly considered and their design should rather be
derived from principles that aim at optimizing a given task
or objective. This is in line with the idea of the purposive
camera: the next generation cameras might be learned end-
to-end to fulfil a particular task. This being said it is not
clear this camera will be a camera at all (in the sense that
it reports images), we advocate the idea of sensors that
report visual codes, for instance coded exposures. Therefore,
the question to ask is, for a given task: what is the right
visual code? That is, how to capture light (under some
hardware constraints) and what is the format it should
report, that is not necessarily digestable by a human but
can be efficiently decoded with some algorithm, that has
been jointly optimized to read those and produce human
interpretable information.

A current limitation of this framework is adaptivity.
Even though the exposure program has been learned on
examples, it does not change in a scene dependent fashion.
Since processing and sensing are collocated they could
influence each other, based on what is being captured. This

is supported by our hardware and is, we think, an important
future research direction.

On the hardware side, we imagine general purpose pro-
grammable sensor processor such as SCAMP-5 to spread in
the computational photography and imaging communities.
Those offer the flexibility of programming low-level hard-
ware features and close the gap between short development
cycles on the algorithmic side when one aims at prototyping
a new idea and long VLSI sensor and processor design
cycles. This is at the expense of specificity: a programmed
sensor processor is not as optimized for any given task as
a Application Specific Integrated Circuit (ASIC) would be.
Nevertheless, those programmed sensor-processor could be
starting points for the design of ASIC, keeping the hard-
ware features used for a given task, optimizing them while
crippling them from the unused ones.

ACKNOWLEDGMENTS

We thank Greg Zaal for the access to the HDR images
(http://hdrihaven.com), used in our experiments. J.N.P.M.
was supported by a Swiss National Foundation (SNF) Fel-
lowship (P2EZP2 181817), G.W. was supported by an NSF
CAREER Award (IIS 1553333), a Sloan Fellowship, by the
KAUST Office of Sponsored Research through the Visual
Computing Center CCF grant, and a PECASE by the ARL.

REFERENCES

[1] P. E. Debevec and J. Malik, “Recovering high dynamic range
radiance maps from photographs,” in Proceedings of the 24th annual
conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 1997, pp. 369–378.

[2] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron,
F. Kainz, J. Chen, and M. Levoy, “Burst photography for high
dynamic range and low-light imaging on mobile cameras,” ACM
Transactions on Graphics (TOG), vol. 35, no. 6, p. 192, 2016.

[3] S. K. Nayar and T. Mitsunaga, “High dynamic range imaging:
Spatially varying pixel exposures,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 1, 2000, pp. 472–479.

[4] S. K. Nayar and V. Branzoi, “Adaptive dynamic range imaging:
Optical control of pixel exposures over space and time,” in IEEE
Int. Conference on Computer Vision (ICCV), 2003, p. 1168.

[5] S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging:
Towards a flexible camera,” Int. Journal of Computer Vision, vol. 70,
no. 1, pp. 7–22, 2006.

[6] J. Gu, Y. Hitomi, T. Mitsunaga, and S. Nayar, “Coded rolling
shutter photography: Flexible space-time sampling,” in 2010 IEEE
Int. Conference on Computational Photography (ICCP), 2010, pp. 1–8.

[7] A. C. Sankaranarayanan, P. K. Turaga, R. G. Baraniuk, and R. Chel-
lappa, “Compressive acquisition of dynamic scenes,” in European
Conference on Computer Vision. Springer, 2010, pp. 129–142.

[8] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strobing pho-
tography: Compressive sensing of high speed periodic videos,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 4, pp. 671–686, 2010.

[9] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video
from a single coded exposure photograph using a learned over-
complete dictionary,” in Int. Conference on Computer Vision (ICCV).
IEEE, 2011, pp. 287–294.

[10] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan, C. Studer,
A. Veeraraghavan, and M. B. Wakin, “Compressive video sensing:
algorithms, architectures, and applications,” IEEE Signal Processing
Magazine, vol. 34, no. 1, pp. 52–66, 2017.

[11] M. Mase, S. Kawahito, M. Sasaki, Y. Wakamori, and M. Furuta, “A
wide dynamic range cmos image sensor with multiple exposure-
time signal outputs and 12-bit column-parallel cyclic a/d convert-
ers,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2787–
2795, 2005.

[12] D. X. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640/spl
times/512 cmos image sensor with ultra wide dynamic range
floating-point pixel-level adc,” in IEEE Solid-State Circuits Confer-
ence, 1999, pp. 308–309.

[13] A. Xhakoni and G. Gielen, “A 132-db dynamic-range global-
shutter stacked architecture for high-performance imagers,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6,
pp. 398–402, 2014.

[14] T. Yamazaki, H. Katayama, S. Uehara, A. Nose, M. Kobayashi,
S. Shida, M. Odahara, K. Takamiya, Y. Hisamatsu, S. Matsumoto
et al., “A 1ms high-speed vision chip with 3d-stacked 140gops
column-parallel pes for spatio-temporal image processing,” in
IEEE Int. Solid-State Circuits Conference (ISSCC), 2017, pp. 82–83.

[15] L. Millet, S. Chevobbe, C. Andriamisaina, E. Beigné, F. Guel-
lec, T. Dombek, L. Benaissa, E. Deschaseaux, M. Duranton,
K. Benchehida et al., “A 5500fps 85gops/w 3d stacked bsi vision
chip based on parallel in-focal-plane acquisition and processing,”
in 2018 IEEE Symposium on VLSI Circuits. IEEE, 2018, pp. 245–246.

[16] Á. Zarándy, Focal-plane sensor-processor chips. Springer Science &
Business Media, 2011.

[17] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A
100,000 fps vision sensor with embedded 535gops/w 256× 256
simd processor array,” in 2013 Symposium on VLSI Circuits. IEEE,
2013, pp. C182–C183.

[18] S. Mann and R. Picard, “Being ’undigital’ with digital cameras:
Extending dynamic range by combining differently exposed pic-
tures,” Proceedings of IS&T, 1995.

[19] S. W. Hasinoff and K. N. Kutulakos, “Multiple-aperture photogra-
phy for high dynamic range and post-capture refocusing,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 1,
no. 1, pp. 1–17, 2009.

[20] M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, “A versatile hdr
video production system,” in ACM Transactions on Graphics (TOG),
vol. 30, no. 4, 2011, p. 41.

[21] G. Wetzstein, I. Ihrke, and W. Heidrich, “Sensor saturation in
fourier multiplexed imaging,” in Proc. CVPR. IEEE, 2010, pp.
545–552.

[22] S. Hajisharif, J. Kronander, and J. Unger, “Adaptive dualiso hdr
reconstruction,” EURASIP Journal on Image and Video Processing,
vol. 2015, no. 1, p. 41, 2015.

[23] A. Serrano, F. Heide, D. Gutierrez, G. Wetzstein, and B. Masia,
“Convolutional sparse coding for high dynamic range imaging,”
in Computer Graphics Forum, vol. 35, no. 2, 2016, pp. 153–163.

[24] M. M. Alghamdi, Q. Fu, A. K. Thabet, and W. Heidrich, “Recon-
figurable snapshot hdr imaging using coded masks and inception
network,” in Vision Modeling and Visualization, 2019.

[25] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure pho-
tography: motion deblurring using fluttered shutter,” in ACM
transactions on graphics (TOG), vol. 25, no. 3. ACM, 2006, pp.
795–804.

[26] A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “Cs-muvi:
Video compressive sensing for spatial-multiplexing cameras,” in
IEEE Int. Conference on Computational Photography (ICCP), 2012, pp.
1–10.

[27] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and
S. Tambe, “Flutter shutter video camera for compressive sensing
of videos,” in IEEE Int. Conference on Computational Photography
(ICCP), 2012, pp. 1–9.

[28] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Pro-
grammable pixel compressive camera for high speed imaging,”
in CVPR. IEEE, 2011, pp. 329–336.

[29] T. Portz, L. Zhang, and H. Jiang, “Random coded sampling for
high-speed hdr video,” in IEEE Int. Conference on Computational
Photography (ICCP), 2013, pp. 1–8.

[30] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deep fully-
connected networks for video compressive sensing,” Digital Signal
Processing, vol. 72, pp. 9–18, 2018.

[31] N. Antipa, P. Oare, E. Bostan, R. Ng, and L. Waller, “Video
from stills: Lensless imaging with rolling shutter,” in IEEE Int.
Conference on Computational Photography (ICCP), 2019, pp. 1–8.

[32] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deepbinarymask:
Learning a binary mask for video compressive sensing,” Digital
Signal Processing: A Review Journal, vol. 96, 2020.

[33] J. A. Lenero-Bardallo, R. Carmona-Galán, and Á. Rodrı́guez-
Vázquez, “A high dynamic range image sensor with linear re-
sponse based on asynchronous event detection,” in Circuit Theory
and Design (ECCTD), 2015, pp. 1–4.

[34] P. Dudek, “Adaptive sensing and image processing with a general-
purpose pixel-parallel sensor/processor array integrated circuit,”
in Int. Workshop on Computer Architecture for Machine Perception and
Sensing. IEEE, 2006, pp. 1–6.

[35] R. Wagner, Á. Zarándy, and T. Roska, “High dynamic range
perception with spatially variant exposure,” in IEEE Int. Workshop,
2004.

[36] J. N. Martel, L. K. Müller, S. J. Carey, and P. Dudek, “Parallel hdr
tone mapping and auto-focus on a cellular processor array vision
chip,” in 2016 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2016, pp. 1430–1433.

[37] J. Fernández-Berni, R. Carmona-Galán, R. del Rı́o, and
A. Rodrı́guez-Vázquez, “High dynamic range adaptation for roi
tracking based on reconfigurable concurrent dual sensing,” in IET
Electronics Letters, vol. 50, no. 24, 2014, pp. 1832–1834.

[38] M. Loose, K. Meier, and J. Schemmel, “A self-calibrating single-
chip cmos camera with logarithmic response,” IEEE Journal of
Solid-state circuits, vol. 36, no. 4, pp. 586–596, 2001.

[39] N. Akahane, R. Ryuzaki, S. Adachi, K. Mizobuchi, and S. Sugawa,
“A 200db dynamic range iris-less cmos image sensor with lateral
overflow integration capacitor using hybrid voltage and current
readout operation,” in IEEE Solid-State Circuits Conference, 2006,
pp. 1161–1170.

[40] E. Teixera, F. Santos, and A. Mesquita, “High fill factor cmos
aps sensor with extended output range,” in IET Electronics Letter,
vol. 46, no. 25, 2010, pp. 1658–1659.

[41] C. Ma, D. S. S. Bello, C. Hoof, and A. Theuwissen, “High dynamic
range hybrid pixel sensor,” Electronics letters, vol. 47, no. 12, pp.
695–696, 2011.

[42] V. Majidzadeh, L. Jacques, A. Schmid, P. Vandergheynst,
and Y. Leblebici, “A (256× 256) pixel 76.7 mw cmos im-
ager/compressor based on real-time in-pixel compressive sens-
ing,” in IEEE Int. Symposium on Circuits and Systems, 2010, pp.
2956–2959.

[43] Y. Oike and A. El Gamal, “Cmos image sensor with per-column
σδ adc and programmable compressed sensing,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 1, pp. 318–328, 2012.

[44] M. Dadkhah, M. J. Deen, and S. Shirani, “Compressive sensing
image sensors-hardware implementation,” Sensors, vol. 13, no. 4,
pp. 4961–4978, 2013.

[45] M. Wei, N. Sarhangnejad, Z. Xia, N. Gusev, N. Katic, R. Genov,
and K. N. Kutulakos, “Coded two-bucket cameras for computer
vision,” in European Conference on Computer Vision, 2018, pp. 54–71.

[46] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db
15µs latency asynchronous temporal contrast vision sensor,” IEEE
journal of solid-state circuits, vol. 43, no. 2, pp. 566–576, 2008.

[47] C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db
dynamic range frame-free pwm image sensor with lossless pixel-
level video compression and time-domain cds,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 1, pp. 259–275, 2010.

[48] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128×128 1.5%
contrast sensitivity 0.9% fpn 3 µs latency 4 mw asynchronous
frame-free dynamic vision sensor using transimpedance preampli-
fiers,” IEEE Journal of Solid-State Circuits, vol. 48, no. 3, pp. 827–838,
2013.

[49] J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation
of a focal plane image processor-a realization of the near-sensor
image processing concept,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 4, no. 3, pp. 322–335, 1996.

[50] F. Paillet, D. Mercier, and T. M. Bernard, “Second generation
programmable artificial retina,” in IEEE Int. ASIC/SOC Conference,
1999, pp. 304–309.

[51] M. Ishikawa, K. Ogawa, T. Komuro, and I. Ishii, “A cmos vision
chip with simd processing element array for 1 ms image process-
ing,” in IEEE Int. Solid-State Circuits Conference, 1999, pp. 206–207.

[52] W. Miao, Q. Lin, W. Zhang, and N.-J. Wu, “A programmable simd
vision chip for real-time vision applications,” IEEE Journal of Solid-
State Circuits, vol. 43, no. 6, pp. 1470–1479, 2008.

[53] A. Lopich and P. Dudek, “An 80× 80 general-purpose digital
vision chip in 0.18 µm cmos technology,” in IEEE Int. Symposium
on Circuits and Systems, 2010, pp. 4257–4260.

[54] A. Rodrı́guez-Vázquez, R. Domı́nguez-Castro, F. Jiménez-Garrido,
S. Morillas, A. Garcı́a, C. Utrera, M. D. Pardo, J. Listan, and
R. Romay, “A cmos vision system on-chip with multi-core, cellular
sensory-processing front-end,” in Cellular nanoscale sensory wave
computing. Springer, 2010, pp. 129–146.

[55] W. Zhang, Q. Fu, and N.-J. Wu, “A programmable vision chip
based on multiple levels of parallel processors,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 9, pp. 2132–2147, 2011.

[56] J. Fernández-Berni, R. Carmona-Galán, and Á. Rodrı́guez-
Vázquez, “Flip-q: A qcif resolution focal-plane array for low-
power image processing,” in Low-Power Smart Imagers for Vision-
Enabled Sensor Networks. Springer, 2012, pp. 67–109.

[57] J. N. Martel, L. K. Müller, S. J. Carey, and P. Dudek, “High-
speed depth from focus on a programmable vision chip using a
focus tunable lens,” in IEEE Int. Symposium on Circuits and Systems
(ISCAS), 2017, pp. 1–4.

[58] J. Chen, S. J. Carey, and P. Dudek, “Feature extraction using a
portable vision system,” 2017.

[59] L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas, “Vi-
sual odometry for pixel processor arrays,” in IEEE Int. Conference
on Computer Vision, 2017, pp. 4604–4612.

[60] A. Chakrabarti, “Learning sensor multiplexing design through
back-propagation,” in Advances in Neural Information Processing
Systems, 2016, pp. 3081–3089.

[61] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich,
F. Heide, and G. Wetzstein, “End-to-end optimization of optics
and image processing for achromatic extended depth of field and
super-resolution imaging,” ACM Transactions on Graphics (TOG),
vol. 37, no. 4, p. 114, 2018.

[62] Y. Wu, V. Boominathan, H. Chen, A. Sankaranarayanan, and
A. Veeraraghavan, “Phasecam3d—learning phase masks for pas-
sive single view depth estimation,” in Int. Conference on Computa-
tional Photography (ICCP). IEEE, 2019, pp. 1–12.

[63] J. Chang and G. Wetzstein, “Deep optics for monocular depth
estimation and 3d object detection,” in ICCV, 2019.

[64] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, and G. Wetzstein,
“Hybrid optical-electronic convolutional neural networks with
optimized diffractive optics for image classification,” Scientific
reports, vol. 8, no. 1, p. 12324, 2018.

[65] C. A. Metzler, H. Ikoma, Y. Peng, and G. Wetzstein, “Deep optics
for single-shot high-dynamic-range imaging,” in Conference on
Computer Vision and Pattern Recognition, 2020.

[66] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Advances in neural information
processing systems, 2016, pp. 4107–4115.

[67] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Int. Conf. on
Medical image computing and computer-assisted intervention, 2015, pp.
234–241.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[69] H. K. Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey,
“Need for speed: A benchmark for higher frame rate object track-
ing,” arXiv preprint arXiv:1703.05884, 2017.

Julien Martel is a postdoctoral research fellow
in the Stanford Computational Imaging Group.
His main interest is in the design of novel vision
algorithms and systems coupling sensing and
processing in-pixel.

Lorenz Müller is a post-doctoral research fel-
low in the Neuromorphic Devices and Systems
group at IBM Research Rüschlikon. His main
interest is in neurally inspired information pro-
cessing.

Stephen Carey is a research fellow at the Mi-
croelectronics Lab at the School of Electrical
and Electronics Engineering, The University of
Manchester. His main interest is in the area of
integrated circuit design in the development of
novel sensor-processor systems.

Piotr Dudek is a Professor of Circuits and
Systems in the School of Electrical and Elec-
tronic Engineering, The University of Manch-
ester, leading the Microelectronics Design Lab.
His research interest is in the area of integrated
circuit design, especially vision sensors, cellu-
lar processor arrays, analogue and mixed-mode
processing hardware, neuromorphic engineer-
ing and brain-inspired systems.

Gordon Wetzstein is an Assistant Professor of
EE and, by courtesy, of CS at Stanford Univer-
sity, leading the Stanford Computational Imaging
Lab and a faculty co-director of the Stanford
Center for Image Systems Engineering.

