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Abstract

Implicitly defined, continuous, differentiable signal representations parameterized1

by neural networks have emerged as a powerful paradigm, offering many possible2

benefits over conventional representations. However, current network architec-3

tures for such implicit neural representations are incapable of modeling signals4

with fine detail, and fail to represent a signal’s spatial and temporal derivatives,5

despite the fact that these are essential to many physical signals defined implicitly6

as the solution to partial differential equations. We propose to leverage periodic7

activation functions for implicit neural representations and demonstrate that these8

networks, dubbed sinusoidal representation networks or SIRENs, are ideally suited9

for representing complex natural signals and their derivatives. We analyze SIREN10

activation statistics to propose a principled initialization scheme and demonstrate11

the representation of images, wavefields, video, sound, and their derivatives. Fur-12

ther, we show how SIRENs can be leveraged to solve challenging boundary value13

problems, such as particular Eikonal equations (yielding signed distance functions),14

the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine15

SIRENs with hypernetworks to learn priors over the space of SIREN functions.16

1 Introduction17

We are interested in a class of functions Φ that satisfy equations of the form18

F
(
x,Φ,∇xΦ,∇2

xΦ, . . .
)

= 0, Φ : x 7→ Φ(x). (1)

This implicit problem formulation takes as input the spatial or spatio-temporal coordinates x ∈ Rm19

and, optionally, derivatives of Φ with respect to these coordinates. Our goal is then to learn a neural20

network that parameterizes Φ to map x to some quantity of interest while satisfying the constraint21

presented in Equation (1). Thus, Φ is implicitly defined by the relation defined by F and we refer to22

neural networks that parameterize such implicitly defined functions as implicit neural representations.23

As we show in this paper, a surprisingly wide variety of problems across scientific fields fall into this24

form, such as modeling many different types of discrete signals in image, video, and audio processing25

using a continuous and differentiable representation, learning 3D shape representations via signed26

distance functions [1–4], and, more generally, solving boundary value problems, such as the Poisson,27

Helmholtz, or wave equations.28

A continuous parameterization offers several benefits over alternatives, such as discrete grid-based29

representations. For example, due to the fact that Φ is defined on the continuous domain of x, it can be30

significantly more memory efficient than a discrete representation, allowing it to model fine detail that31

is not limited by the grid resolution but by the capacity of the underlying network architecture. Being32

differentiable implies that gradients and higher-order derivatives can be computed analytically, for33

example using automatic differentiation, which again makes these models independent of conventional34
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grid resolutions. Finally, with well-behaved derivatives, implicit neural representations may offer a35

new toolbox for solving inverse problems, such as differential equations.36

For these reasons, implicit neural representations have seen significant research interest over the37

last year (Sec. 2). Most of these recent representations build on ReLU-based multilayer perceptrons38

(MLPs). While promising, these architectures lack the capacity to represent fine details in the39

underlying signals, and they typically do not represent the derivatives of a target signal well. This40

is partly due to the fact that ReLU networks are piecewise linear, their second derivative is zero41

everywhere, and they are thus incapable of modeling information contained in higher-order derivatives42

of natural signals. While alternative activations, such as tanh or softplus, are capable of representing43

higher-order derivatives, we demonstrate that their derivatives are often not well behaved and also44

fail to represent fine details.45

To address these limitations, we leverage MLPs with periodic activation functions for implicit neural46

representations. We demonstrate that this approach is not only capable of representing details in the47

signals better than ReLU-MLPs, or positional encoding strategies proposed in concurrent work [5],48

but that these properties also uniquely apply to the derivatives, which is critical for many applications49

we explore in this paper.50

To summarize, the contributions of our work include:51

• A continuous implicit neural representation using periodic activation functions that fits52

complicated signals, such as natural images and 3D shapes, and their derivatives robustly.53

• An initialization scheme for training these representations and validation that distributions54

of these representations can be learned using hypernetworks.55

• Demonstration of applications in: image, video, and audio representation; 3D shape re-56

construction; solving first-order differential equations that aim at estimating a signal by57

supervising only with its gradients; and solving second-order differential equations.58

2 Related Work59

Implicit neural representations. Recent work has demonstrated the potential of fully connected60

networks as continuous, memory-efficient implicit representations for shape parts [6, 7], objects [1, 4,61

8, 9], or scenes [10–12]. These representations are typically trained from some form of 3D data as62

either signed distance functions [1, 4, 8–12] or occupancy networks [2, 13]. In addition to representing63

shape, some of these models have been extended to also encode object appearance [3, 5, 10, 14, 15],64

which can be trained using (multiview) 2D image data using neural rendering [16]. Temporally aware65

extensions [17] and variants that add part-level semantic segmentation [18] have also been proposed.66

Periodic nonlinearities. Periodic nonlinearities have been investigated repeatedly over the past67

decades, but have so far failed to robustly outperform alternative activation functions. Early work68

includes Fourier neural networks, engineered to mimic the Fourier transform via single-hidden-69

layer networks [19, 20]. Other work explores neural networks with periodic activations for simple70

classification tasks [21–23] and recurrent neural networks [24–28]. It has been shown that such71

models have universal function approximation properties [29–31]. Compositional pattern producing72

networks [32, 33] also leverage periodic nonlinearities, but rely on a combination of different73

nonlinearities via evolution in a genetic algorithm framework. Motivated by the discrete cosine74

transform, Klocek et al. [34] leverage cosine activation functions for image representation but they75

do not study the derivatives of these representations or other applications explored in our work.76

Inspired by these and other seminal works, we explore MLPs with periodic activation functions for77

applications involving implicit neural representations and their derivatives, and we propose principled78

initialization and generalization schemes.79

Neural DE Solvers. Neural networks have long been investigated in the context of solving differ-80

ential equations (DEs) [35], and have previously been introduced as implicit representations for this81

task [36]. Early work on this topic involved simple neural network models, consisting of MLPs or82

radial basis function networks with few hidden layers and hyperbolic tangent or sigmoid nonlinear-83

ities [36–38]. The limited capacity of these shallow networks typically constrained results to 1D84

solutions or simple 2D surfaces. Modern approaches to these techniques leverage recent optimization85
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Figure 1: Comparison of different implicit network architectures fitting a ground truth image (top left).
The representation is only supervised on the target image but we also show first- and second-order
derivatives of the function fit in rows 2 and 3, respectively.

frameworks and auto-differentiation, but use similar architectures based on MLPs. Still, solving more86

sophisticated equations with higher dimensionality, more constraints, or more complex geometries87

is feasible [39–41]. However, we show that the commonly used MLPs with smooth, non-periodic88

activation functions fail to accurately model high-frequency information and higher-order derivatives89

even with dense supervision.90

Neural ODEs [42] are related to this topic, but are very different in nature. Whereas implicit neural91

representations can be used to directly solve ODEs or PDEs from supervision on the system dynamics,92

neural ODEs allow for continuous function modeling by pairing a conventional ODE solver (e.g.,93

implicit Adams or Runge-Kutta) with a network that parameterizes the dynamics of a function. The94

proposed architecture may be complementary to this line of work.95

3 Formulation96

Our goal is to solve problems of the form presented in Equation (1). We cast this as97

a feasibility problem, where a function Φ is sought that satisfies a set of M constraints98

{Cm(a(x),Φ(x),∇Φ(x), ...)}Mm=1, each of which relate the function Φ and/or its derivatives to99

quantities a(x):100

find Φ(x) subject to Cm
(
a(x),Φ(x),∇Φ(x), ...

)
= 0, ∀x ∈ Ωm, m = 1, . . . ,M (2)

This problem can be cast in a loss function that penalizes deviations from each of the constraints on101

their domain Ωm:102

L =

∫
Ω

M∑
m=1

1Ωm
(x) ‖Cm(a(x),Φ(x),∇Φ(x), ...)‖dx, (3)

with the indicator function 1Ωm(x) = 1 when x ∈ Ωm and 0 when x 6∈ Ωm. In practice, the103

loss function is enforced by sampling Ω. A dataset D = {(xi,ai(x))}i is a set of tuples of104

coordinates xi ∈ Ω along with samples from the quantities a(xi) that appear in the constraints.105

Thus, the loss in Equation (3) is enforced on coordinates xi sampled from the dataset, yielding106

the loss L̃ =
∑
i∈D

∑M
m=1 ‖Cm(a(xi),Φ(xi),∇Φ(xi), ...)‖. In practice, the dataset D is sampled107

dynamically at training time, approximating L better as the number of samples grows, as in Monte108

Carlo integration.109

We parameterize functions Φθ as fully connected neural networks with parameters θ, and solve the110

resulting optimization problem using gradient descent.111

3.1 Periodic Activations for Implicit Neural Representations112

We propose SIREN, a simple neural network architecture for implicit neural representations that uses113

the sine as a periodic activation function:114

Φ (x) = Wn (φn−1 ◦ φn−2 ◦ . . . ◦ φ0) (x) + bn, xi 7→ φi (xi) = sin (Wixi + bi) . (4)
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Here, φi : RMi 7→ RNi is the ith layer of the network. It consists of the affine transform defined by115

the weight matrix Wi ∈ RNi×Mi and the biases bi ∈ RNi applied on the input xi ∈ RMi , followed116

by the sine nonlinearity applied to each component of the resulting vector.117

Interestingly, any derivative of a SIREN is itself a SIREN, as the derivative of the sine is a cosine, i.e.,118

a phase-shifted sine (see supplemental). Therefore, the derivatives of a SIREN inherit the properties119

of SIRENs, enabling us to supervise any derivative of SIREN with “complicated” signals. In our120

experiments, we demonstrate that when a SIREN is supervised using a constraint Cm involving the121

derivatives of φ, the function φ remains well behaved, which is crucial in solving many problems,122

including boundary value problems (BVPs).123

We will show that SIRENs can be initialized with some control over the distribution of activations,124

allowing us to create deep architectures. Furthermore, SIRENs converge significantly faster than125

baseline architectures, fitting, for instance, a single image in a few hundred iterations, taking a few126

seconds on a modern GPU, while featuring higher image fidelity (Fig. 1).127
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Figure 2: Example frames from fitting a video with SIREN
and ReLU-MLPs. Our approach faithfully reconstructs fine
details like the whiskers. Mean (and standard deviation) of
the PSNR over all frames is reported.

A simple example: fitting an im-128

age. Consider the case of finding129

the function Φ : R2 7→ R3,x →130

Φ(x) that parameterizes a given dis-131

crete image f in a continuous fash-132

ion. The image defines a dataset133

D = {(xi, f(xi))}i of pixel coordi-134

nates xi = (xi, yi) associated with135

their RGB colors f(xi). The only con-136

straint C enforces is that Φ shall out-137

put image colors at pixel coordinates,138

solely depending on Φ (none of its139

derivatives) and f(xi), with the form140

C(f(xi),Φ(x)) = Φ(xi) − f(xi)141

which can be translated into the loss142

L̃ =
∑
i ‖Φ(xi)− f(xi)‖2. In Fig. 1,143

we fit Φθ using comparable network architectures with different activation functions to a natural144

image. We supervise this experiment only on the image values, but also visualize the gradients ∇f145

and Laplacians ∆f . While only two approaches, a ReLU network with positional encoding (P.E.) [5]146

and our SIREN, accurately represent the ground truth image f (x), SIREN is the only network capable147

of also representing the derivatives of the signal. Additionally, we run a simple experiment where148

we fit a short video with 300 frames and with a resolution of 512×512 pixels using both ReLU and149

SIREN MLPs. As seen in Figure 2, our approach is successful in representing this video with an150

average peak signal-to-noise ratio close to 30 dB, outperforming the ReLU baseline by about 5 dB.151

We also show the flexibility of SIRENs by representing audio signals in the supplement.152

3.2 Distribution of activations, frequencies, and a principled initialization scheme153

We present a principled initialization scheme necessary for the effective training of SIRENs. While154

presented informally here, we discuss further details, proofs and empirical validation in the supple-155

mental material. The key idea in our initialization scheme is to preserve the distribution of activations156

through the network so that the final output at initialization does not depend on the number of layers.157

Note that building SIRENs with not carefully chosen uniformly distributed weights yielded poor158

performance both in accuracy and in convergence speed.159

To this end, let us first consider the output distribution of a single sine neuron with the uniformly160

distributed input x ∼ U(−1, 1). The neuron’s output is y = sin(ax+ b) with a, b ∈ R. It161

can be shown that for any a > π
2 , i.e. spanning at least half a period, the output of the sine is162

y ∼ arcsine(−1, 1), a special case of a U-shaped Beta distribution and independent of the choice of163

b. We can now reason about the output distribution of a neuron. Taking the linear combination of n164

inputs x ∈ Rn weighted by w ∈ Rn, its output is y = sin
(
wTx + b

)
. Assuming this neuron is in165

the second layer, each of its inputs is arcsine distributed. When each component of w is uniformly166

distributed such as wi ∼ U(−c/
√
n, c/
√
n), c ∈ R, we show (see supplemental) that the dot product167

converges to the normal distribution wTx ∼ N (0, c2/6) as n grows. Finally, feeding this normally168
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Figure 3: Poisson image reconstruction: An image (left) is reconstructed by fitting a SIREN,
supervised either by its gradients or Laplacians (underlined in green). The results, shown in the center
and right, respectively, match both the image and its derivatives well. Poisson image editing: The
gradients of two images (top) are fused (bottom left). SIREN allows for the composite (right) to be
reconstructed using supervision on the gradients (bottom right).

distributed dot product through another sine is also arcsine distributed for any c >
√

6. Note that the169

weights of a SIREN can be interpreted as angular frequencies while the biases are phase offsets. Thus,170

larger frequencies appear in the networks for weights with larger magnitudes. For |wTx| < π/4,171

the sine layer will leave the frequencies unchanged, as the sine is approximately linear. In fact, we172

empirically find that a sine layer keeps spatial frequencies approximately constant for amplitudes173

such as |wTx| < π, and increases spatial frequencies for amplitudes above this value1.174

Hence, we propose to draw weights with c = 6 so that wi ∼ U(−
√

6/n,
√

6/n). This ensures that175

the input to each sine activation is normal distributed with a standard deviation of 1. Since only a176

few weights have a magnitude larger than π, the frequency throughout the sine network grows only177

slowly. Finally, we propose to initialize the first layer of the sine network with weights so that the178

sine function sin(ω0 ·Wx + b) spans multiple periods over [−1, 1]. We found ω0 = 30 to work179

well for all the applications in this work. The proposed initialization scheme yielded fast and robust180

convergence using the ADAM optimizer for all experiments in this work.181

4 Experiments182

In this section, we leverage SIRENs to solve challenging boundary value problems using different types183

of supervision of the derivatives of Φ. We first solve the Poisson equation via direct supervision of its184

derivatives. We then solve a particular form of the Eikonal equation, placing a unit-norm constraint185

on gradients, parameterizing the class of signed distance functions (SDFs). SIREN significantly186

outperforms ReLU-based SDFs, capturing large scenes at a high level of detail. We then solve187

the second-order Helmholtz partial differential equation, and the challenging inverse problem of188

full-waveform inversion. Finally, we combine SIRENs with hypernetworks, learning a prior over the189

space of parameterized functions. All code and data will be made publicly available.190

4.1 Solving the Poisson Equation191

We demonstrate that the proposed representation is not only able to accurately represent a function192

and its derivatives, but that it can also be supervised solely by its derivatives, i.e., the model is never193

presented with the actual function values, but only values of its first or higher-order derivatives.194

An intuitive example representing this class of problems is the Poisson equation. The Poisson195

equation is perhaps the simplest elliptic partial differential equation (PDE) which is crucial in physics196

and engineering, for example to model potentials arising from distributions of charges or masses.197

In this problem, an unknown ground truth signal f is estimated from discrete samples of either its198

gradients ∇f or Laplacian ∆f = ∇ ·∇f as199

Lgrad. =

∫
Ω

‖∇xΦ(x)−∇xf(x)‖ dx, or Llapl. =

∫
Ω

‖∆Φ(x)−∆f(x)‖ dx. (5)

1Formalizing the distribution of output frequencies throughout SIRENs proves to be a hard task and is out of
the scope of this work.
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Figure 4: Shape representation. We fit signed distance functions parameterized by implicit neural
representations directly on point clouds. Compared to ReLU implicit representations, our periodic
activations significantly improve detail of objects (left) and complexity of entire scenes (right).

Poisson image reconstruction. Solving the Poisson equation enables the reconstruction of images200

from their derivatives. We show results of this approach using SIREN in Fig. 3. Supervising the implicit201

representation with either ground truth gradients via Lgrad. or Laplacians via Llapl. successfully202

reconstructs the image. Remaining intensity variations are due to the ill-posedness of the problem.203

Poisson image editing. Images can be seamlessly fused in the gradient domain [43]. For this204

purpose, Φ is supervised using Lgrad. of Eq. (5), where ∇xf(x) is a composite function of the205

gradients of two images f1,2: ∇xf(x) = α ·∇f1(x) + (1− α) ·∇f2(x), α ∈ [0, 1]. Fig. 3 shows206

two images seamlessly fused with this approach.207

4.2 Representing Shapes with Signed Distance Functions208

Inspired by recent work on shape representation with differentiable signed distance functions209

(SDFs) [1, 4, 9], we fit SDFs directly on oriented point clouds using both ReLU-based implicit210

neural representations and SIRENs. This amounts to solving a particular Eikonal boundary value211

problem that constrains the norm of spatial gradients |∇xΦ| to be 1 almost everywhere. Note that212

ReLU networks are seemingly ideal for representing SDFs, as their gradients are locally constant and213

their second derivatives are 0. Adequate training procedures for working directly with point clouds214

were described in prior work [4, 9]. We fit a SIREN to an oriented point cloud using a loss of the form215

Lsdf =

∫
Ω

∥∥ |∇xΦ(x)|−1
∥∥dx+

∫
Ω0

‖Φ(x)‖+
(
1−〈∇xΦ(x),n(x)〉

)
dx+

∫
Ω\Ω0

ψ
(
Φ(x)

)
dx, (6)

Here, ψ(x) = exp(−α · |Φ(x)|), α� 1 penalizes off-surface points for creating SDF values close216

to 0. Ω is the whole domain and we denote the zero-level set of the SDF as Ω0. The model Φ(x) is217

supervised using oriented points sampled on a mesh, where we require the SIREN to respect Φ(x) = 0218

and its normals n(x) = ∇f(x). During training, each minibatch contains an equal number of points219

on and off the mesh, each one randomly sampled over Ω. As seen in Fig. 4, the proposed periodic220

activations significantly increase the details of objects and the complexity of scenes that can be221

represented by these neural SDFs, parameterizing a full room with only five fully connected layers.222

4.3 Solving the Helmholtz and Wave Equations223

The Helmholtz and wave equations are second-order partial differential equations related to the224

physical modeling of diffusion and waves. They are closely related through a Fourier-transform225

relationship, with the Helmholtz equation given as226

H(m) Φ(x) = −f(x), withH(m) =
(
∆ +m(x)w2

)
. (7)

Here, f(x) represents a known source function, Φ(x) is the unknown wavefield, and the squared227

slowness m(x) = 1/c(x)2 is a function of the wave velocity c(x). In general, the solutions to the228

Helmholtz equation are complex-valued and require numerical solvers to compute. As the Helmholtz229

and wave equations follow a similar form, we discuss the Helmholtz equation here, with additional230

results and discussion for the wave equation in the supplement.231

Solving for the wavefield. We solve for the wavefield by parameterizing Φ(x) with a SIREN. To232

accommodate a complex-valued solution, we configure the network to output two values, interpreted233

as the real and imaginary parts. Training is performed on randomly sampled points x within the234
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Figure 5: Direct Inversion: We solve the Helmholtz equation for a single point source placed at
the center of a medium (green dot) with uniform wave propagation velocity (top left). The SIREN
solution closely matches a principled grid solver [44] while other network architectures fail to find the
correct solution. Neural Full-Waveform Inversion (FWI): A scene contains a source (green) and a
circular wave velocity perturbation centered at the origin (top left). With the scene velocity known
a priori, SIREN directly reconstructs a wavefield that closely matches a principled grid solver [44]
(bottom left, middle left). For FWI, the velocity and wavefields are reconstructed with receiver
measurements (blue dots) from sources triggered in sequence (green, red dots). The SIREN velocity
model outperforms a principled FWI solver [45], accurately predicting wavefields. FWI MSE values
are calculated across all wavefields and the visualized real wavefield corresponds to the green source.

domain Ω = {x ∈ R2 | ‖x‖∞ < 1}. The network is supervised using a loss function based235

on the Helmholtz equation, LHelmholtz =
∫

Ω
λ(x) ‖H(m)Φ(x) + f(x)‖1 dx, with λ(x) = k, a236

hyperparameter, when f(x) 6= 0 (corresponding to the inhomogeneous contribution to the Helmholtz237

equation) and λ(x) = 1 otherwise (for the homogenous part). Each minibatch contains samples from238

both contributions and k is set so the losses are approximately equal at the beginning of training. In239

practice, we use a slightly modified form of Equation (7) to include the perfectly matched boundary240

conditions that are necessary to ensure a unique solution [44] (see supplement for details).241

Results are shown in Fig. 5 for solving the Helmholtz equation in two dimensions with spatially242

uniform wave velocity and a single point source (modeled as a Gaussian with σ2 = 10−4). The243

SIREN solution is compared with a principled solver [44] as well as other neural network solvers. All244

evaluated network architectures use the same number of hidden layers as SIREN but with different245

activation functions. In the case of the RBF network, we prepend an RBF layer with 1024 hidden246

units and use a tanh activation. SIREN is the only representation capable of producing a high-fidelity247

reconstruction of the wavefield. We also note that the tanh network has a similar architecture to recent248

work on neural PDE solvers [40], except we increase the network size to match SIREN.249

Neural full-waveform inversion (FWI). In many wave-based sensing modalities (radar, sonar,250

seismic imaging, etc.), one attempts to probe and sense across an entire domain using sparsely placed251

sources (i.e., transmitters) and receivers. FWI uses the known locations of sources and receivers to252

jointly recover the entire wavefield and other physical properties, such as permittivity, density, or253

wave velocity. Specifically, the FWI problem can be described as [46]254

arg min
m,Φ

N∑
i=1

∫
Ω

|Xr(Φi(x)− ri(x))|2 dx s.t. H(m) Φi(x) = −fi(x), 1 ≤ i ≤ N, ∀x ∈ Ω, (8)

where there are N sources, Xr samples the wavefield at the receiver locations, and ri(x) models255

receiver data for the ith source.256

We first use a SIREN to directly solve Eq. 7 for a known wave velocity perturbation, obtaining an257

accurate wavefield that closely matches that of a principled solver [44] (see Fig. 5, right). Without258

a priori knowledge of the velocity field, FWI is used to jointly recover the wavefields and velocity.259

Here, we use 5 sources and place 30 receivers around the domain, as shown in Fig. 5. Using the260

principled solver, we simulate the receiver measurements for the 5 wavefields (one for each source)261

at a single frequency of 3.2 Hz, which is chosen to be relatively low for improved convergence. We262

pre-train SIREN to output 5 complex wavefields and a squared slowness value for a uniform velocity.263

Then, we optimize for the wavefields and squared slowness using a penalty method variation [46]264

of Eq. 8 (see the supplement for additional details). In Fig. 5, we compare to an FWI solver based265

on the alternating direction method of multipliers [45, 47]. With only a single frequency for the266

inversion, the principled solver is prone to converge to a poor solution for the velocity. As shown in267
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Figure 6: Generalizing across implicit functions parameterized by SIRENs on the CelebA dataset [48].
Image inpainting results are shown for various numbers of context pixels in Oj .

Fig. 5, SIREN converges to a better velocity solution and accurate solutions for the wavefields. All268

reconstructions are performed or shown at 256× 256 resolution to avoid noticeable stair-stepping269

artifacts in the circular velocity perturbation.270

4.4 Learning a Space of Implicit Functions271

A powerful concept that has emerged for implicit representations is to learn priors over the space272

of functions that define them [1, 2, 10]. Here we demonstrate that the function space parameterized273

by SIRENs also admits the learning of powerful priors. Each of these SIRENs Φj are fully defined274

by their parameters θj ∈ Rl. Assuming that all parameters θj of a class exist in a k-dimensional275

subspace of Rl, k < l, then these parameters can be well modeled by latent code vectors in z ∈ Rk.276

Like in neural processes [49–51], we condition these latent code vectors on partial observations of277

the signal O ∈ Rm through an encoder278

C : Rm → Rk, Oj 7→ C(Oj) = zj , (9)
and use a ReLU hypernetwork [52], to map the latent code to the weights of a SIREN, as in [10]:279

Ψ : Rk → Rl, zj 7→ Ψ(zj) = θj . (10)

We replicated the experiment from [49] on the CelebA dataset [48] using a set encoder. Additionally,280

we show results using a convolutional neural network encoder which operates on sparse images.281

Interestingly, this improves the quantitative and qualitative performance on the inpainting task.282

Table 1: Quantitative comparison to Conditional Neural
Processes [49] (CNPs) on the 32× 32 CelebA test set.
Metrics are reported in pixel-wise mean squared error.

Number of Context Pixels 10 100 1000

CNP [49] 0.039 0.016 0.009
Set Encoder + Hypernet. 0.035 0.013 0.009
CNN Encoder + Hypernet. 0.033 0.009 0.008

283

At test time, this enables reconstruc-284

tion from sparse pixel observations, and,285

thereby, inpainting. Fig. 6 shows test-time286

reconstructions from a varying number of287

pixel observations. Note that these inpaint-288

ing results were all generated using the289

same model, with the same parameter val-290

ues. Tab. 1 reports a quantitative compari-291

son to [49], demonstrating that generaliza-292

tion over SIREN representations is at least equally as powerful as generalization over images.293

5 Discussion and Conclusion294

The question of how to represent a signal is at the core of many problems across science and295

engineering. Implicit neural representations may provide a new tool for many of these by offering296

a number of potential benefits over conventional continuous and discrete representations. We297

demonstrate that periodic activation functions are ideally suited for representing complex natural298

signals and their derivatives using implicit neural representations. We also prototype several boundary299

value problems that our framework is capable of solving robustly. There are several exciting avenues300

for future work, including the exploration of other types of inverse problems and applications in areas301

beyond implicit neural representations, for example neural ODEs [42].302

With this work, we make important contributions to the emerging field of implicit neural representation303

learning and its applications.304
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Broader Impact305

The proposed SIREN representation enables accurate representations of natural signals, such as306

images, audio, and video in a deep learning framework. This may be an enabler for downstream307

tasks involving such signals, such as classification for images or speech-to-text systems for audio.308

Such applications may be leveraged for both positive and negative ends. SIREN may in the future309

further enable novel approaches to the generation of such signals. This has potential for misuse in310

impersonating actors without their consent. For an in-depth discussion of such so-called DeepFakes,311

we refer the reader to a recent review article on neural rendering [16].312
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